An AI-Driven System for Learning MQTT Communication Protocols with Python Programming

Збережено в:
Бібліографічні деталі
Опубліковано в::Electronics vol. 14, no. 24 (2025), p. 4967-4989
Автор: Zhu Zihao
Інші автори: Funabiki Nobuo, Sandi Kyaw Htoo Htoo, Kotama I Nyoman Darma, Pradhana Anak Agung Surya, Rahmadani Alfiandi Aulia, Noprianto
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3286276046
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14244967  |2 doi 
035 |a 3286276046 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Zhu Zihao 
245 1 |a An AI-Driven System for Learning MQTT Communication Protocols with Python Programming 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With rapid developments of wireless communication and Internet of Things (IoT) technologies, an increasing number of devices and sensors are interconnected, generating massive amounts of data in real time. Among the underlying protocols, Message Queuing Telemetry Transport (MQTT) has become a widely adopted lightweight publish–subscribe standard due to its simplicity, minimal overhead, and scalability. Then, understanding such protocols is essential for students and engineers engaging in IoT application system designs. However, teaching and learning MQTT remains challenging for them. Its asynchronous architecture, hierarchical topic structure, and constituting concepts such as retained messages, Quality of Service (QoS) levels, and wildcard subscriptions are often difficult for beginners. Moreover, traditional learning resources emphasize theory and provide limited hands-on guidance, leading to a steep learning curve. To address these challenges, we propose an AI-assisted, exercise-based learning platform for MQTT. This platform provides interactive exercises with intelligent feedback to bridge the gap between theory and practice. To lower the barrier for learners, all code examples for executing MQTT communication are implemented in Python for readability, and Docker is used to ensure portable deployments of the MQTT broker and AI assistant. For evaluations, we conducted a usability study using two groups. The first group, who has no prior experience, focused on fundamental concepts with AI-guided exercises. The second group, who has relevant background, engaged in advanced projects to apply and reinforce their knowledge. The results show that the proposed platform supports learners at different levels, reduces frustrations, and improves both engagement and efficiency. 
610 4 |a Raspberry Pi Ltd 
653 |a Subscriptions 
653 |a Pedagogy 
653 |a Students 
653 |a Reflective teaching 
653 |a Active learning 
653 |a Internet of Things 
653 |a Wireless communications 
653 |a Constructivism 
653 |a Artificial intelligence 
653 |a Communication 
653 |a Laboratories 
653 |a Knowledge management 
653 |a Design 
653 |a Learning curves 
653 |a Cognitive load 
653 |a Automation 
653 |a Environmental monitoring 
653 |a Messages 
653 |a Python 
653 |a Performance evaluation 
653 |a Online tutorials 
653 |a Feedback 
653 |a Education 
653 |a Queueing 
700 1 |a Funabiki Nobuo 
700 1 |a Sandi Kyaw Htoo Htoo 
700 1 |a Kotama I Nyoman Darma 
700 1 |a Pradhana Anak Agung Surya 
700 1 |a Rahmadani Alfiandi Aulia 
700 1 |a Noprianto 
773 0 |t Electronics  |g vol. 14, no. 24 (2025), p. 4967-4989 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286276046/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286276046/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286276046/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch