Accelerated Feature Selection via Discernibility Hashing: A Rough Set Approach

Guardado en:
Detalles Bibliográficos
Publicado en:Entropy vol. 27, no. 12 (2025), p. 1222-1237
Autor principal: Luo Sheng
Otros Autores: Shi Linxiang, Chen, Lin, Cao Xiaolin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286279737
003 UK-CbPIL
022 |a 1099-4300 
024 7 |a 10.3390/e27121222  |2 doi 
035 |a 3286279737 
045 2 |b d20250101  |b d20251231 
084 |a 231460  |2 nlm 
100 1 |a Luo Sheng  |u School of Computer and Information, Shanghai Polytechnic University, Shanghai 201209, China; tjluosheng@gmail.com (S.L.); chenl@sspu.edu.cn (L.C.); xlcaosspu@163.com (X.C.) 
245 1 |a Accelerated Feature Selection via Discernibility Hashing: A Rough Set Approach 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a As a foundational analytical tool, the discernibility matrix plays a pivotal role in the systematic reduction of knowledge in rough set-based systems. Recent advancements in rough set theory have witnessed the proliferation of discernibility matrix-based knowledge reduction algorithms, with notable applications in classical, neighborhood, covering, and fuzzy rough set models. However, the quadratic growth of the discernibility matrix’s complexity (relative to domain size) imposes fundamental scalability limits, rendering it inefficient for real-world applications with massive datasets. To address this issue, we introduced a discernibility hashing strategy to limit the growth scale of the discernibility attributes and proposed a feature selection algorithm via discernibility hash based on rough set theory. First, on the premise of keeping the information of the original discernibility matrix unchanged, the method maps the discernibility attribute set of all objects to the storage unit through a hash function and records the number of collisions to construct a discernibility hash. By using this mapping, the two-dimensional matrix space can be reduced to a one-dimensional hash space, which greatly removes invalid and redundant elements. Secondly, based on the discernibility hash, an efficient knowledge reduction algorithm is proposed. The algorithm avoids invalid and redundant element attribute sets to participate in the knowledge reduction process and improves the efficiency of the algorithm. Finally, the experimental results show that the method is superior to the discernibility matrix method in terms of storage space and running time. 
653 |a Machine learning 
653 |a Rough set models 
653 |a Artificial intelligence 
653 |a Hash based algorithms 
653 |a Massive data points 
653 |a Matrix methods 
653 |a Storage units 
653 |a Feature selection 
653 |a Information systems 
653 |a Methods 
653 |a Algorithms 
653 |a Set theory 
653 |a Fuzzy sets 
653 |a Maps 
653 |a Entropy 
653 |a Efficiency 
700 1 |a Shi Linxiang  |u School of Computer and Information, Shanghai Polytechnic University, Shanghai 201209, China; tjluosheng@gmail.com (S.L.); chenl@sspu.edu.cn (L.C.); xlcaosspu@163.com (X.C.) 
700 1 |a Chen, Lin  |u School of Computer and Information, Shanghai Polytechnic University, Shanghai 201209, China; tjluosheng@gmail.com (S.L.); chenl@sspu.edu.cn (L.C.); xlcaosspu@163.com (X.C.) 
700 1 |a Cao Xiaolin  |u School of Computer and Information, Shanghai Polytechnic University, Shanghai 201209, China; tjluosheng@gmail.com (S.L.); chenl@sspu.edu.cn (L.C.); xlcaosspu@163.com (X.C.) 
773 0 |t Entropy  |g vol. 27, no. 12 (2025), p. 1222-1237 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286279737/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286279737/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286279737/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch