Representative Points of the Inverse Gaussian Distribution and Their Applications

Збережено в:
Бібліографічні деталі
Опубліковано в::Entropy vol. 27, no. 12 (2025), p. 1190-1218
Автор: Wen-Wen, Hu
Інші автори: Kai-Tai, Fang, Xiao-Ling, Peng
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3286280145
003 UK-CbPIL
022 |a 1099-4300 
024 7 |a 10.3390/e27121190  |2 doi 
035 |a 3286280145 
045 2 |b d20250101  |b d20251231 
084 |a 231460  |2 nlm 
100 1 |a Wen-Wen, Hu  |u Faculty of Science and Technology, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; wenwenhu@bnbu.edu.cn (W.-W.H.); ktfang@bnbu.edu.cn (K.-T.F.) 
245 1 |a Representative Points of the Inverse Gaussian Distribution and Their Applications 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The inverse Gaussian (IG) distribution, as an important class of skewed continuous distributions, is widely applied in fields such as lifetime testing, financial modeling, and volatility analysis. This paper makes two primary contributions to the statistical inference of the IG distribution. First, a systematic investigation is presented, for the first time, into three types of representative points (RPs)—Monte Carlo (MC-RPs), quasi-Monte Carlo (QMC-RPs), and mean square error RPs (MSE-RPs)—as a tool for the efficient discrete approximation of the IG distribution, thereby addressing the common scenario where practical data is discrete or requires discretization. The performance of these RPs is thoroughly examined in applications such as low-order moment estimation, density function approximation, and resampling. Simulation results demonstrate that the MSE-RPs consistently outperform the other two types in terms of approximation accuracy and robustness. Second, the Harrell–Davis (HD) and three Sfakianakis–Verginis (SV1, SV2, SV3) quantile estimators are introduced to enhance the representativeness of samples from the IG distribution, thereby significantly improving the accuracy of parameter estimation. Moreover, case studies based on real-world data confirm the effectiveness and practical utility of this quantile estimator methodology. 
653 |a Skewness 
653 |a Accuracy 
653 |a Mean square errors 
653 |a Simulation 
653 |a Satellite communications 
653 |a Random variables 
653 |a Parameter estimation 
653 |a Brownian motion 
653 |a Resampling 
653 |a Normal distribution 
653 |a Quantiles 
653 |a Traffic control 
653 |a Approximation 
653 |a Stochastic models 
653 |a Algorithms 
653 |a Density functions 
653 |a Information theory 
653 |a Statistical analysis 
653 |a Probability distribution 
653 |a Statistical inference 
653 |a Inverse Gaussian probability distribution 
700 1 |a Kai-Tai, Fang  |u Faculty of Science and Technology, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; wenwenhu@bnbu.edu.cn (W.-W.H.); ktfang@bnbu.edu.cn (K.-T.F.) 
700 1 |a Xiao-Ling, Peng  |u Faculty of Science and Technology, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; wenwenhu@bnbu.edu.cn (W.-W.H.); ktfang@bnbu.edu.cn (K.-T.F.) 
773 0 |t Entropy  |g vol. 27, no. 12 (2025), p. 1190-1218 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286280145/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286280145/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286280145/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch