DMSNet: A Dynamic Multi-Scale Feature Fusion Segmentation Network for Precise Large Yellow Croaker Recognition in Complex Underwater Conditions

Guardado en:
Detalles Bibliográficos
Publicado en:Fishes vol. 10, no. 12 (2025), p. 613-638
Autor principal: Wang, Can
Otros Autores: Zhang Zhouming, Shao Jianchun, Liao Naiyu, Que Pengrong, Kong Xiangzeng, Zhang, Tingting
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286281018
003 UK-CbPIL
022 |a 2410-3888 
024 7 |a 10.3390/fishes10120613  |2 doi 
035 |a 3286281018 
045 2 |b d20250101  |b d20251231 
100 1 |a Wang, Can  |u College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; wangcan@fafu.edu.cn (C.W.); 12312098008@fafu.edu.cn (Z.Z.); 52412047028@fafu.edu.cn (N.L.) 
245 1 |a DMSNet: A Dynamic Multi-Scale Feature Fusion Segmentation Network for Precise Large Yellow Croaker Recognition in Complex Underwater Conditions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate monitoring of fish morphology and behavior is crucial to intelligent aquaculture management, especially for economically important species such as the large yellow croaker. To address challenges including turbid water, uneven lighting, and occlusions in real farming environments, this study develops DMSNet—an underwater image segmentation model based on an enhanced TransNeXt architecture. The model incorporates three novel modules, a Convolutional Dynamic Gated Linear Unit (CDGLU), an Agentic Cross-Attention Fusion Module (ACAF), and Pooling Channel-Spatial Attention (PCSA), significantly improving feature fusion and robustness under complex conditions. To better support applications in aquaculture, a dedicated dataset of underwater large yellow croaker, called the Large Yellow Croaker Dataset (LYCD), was constructed, covering the varied clarity levels typically found in farming operations. Experimental results show that DMSNet achieves an Acc of 98.01%, an IoU of 91.73%, an F1 of 96.17%, and an inference speed of 29.25 FPS, outperforming state-of-the-art methods, particularly in turbid and low-contrast scenarios. This study presents a practical and efficient tool for non-invasive fish monitoring that is capable of accurately identifying large yellow croaker underwater in real-world aquaculture environments with complex water conditions. 
651 4 |a China 
653 |a Economic importance 
653 |a Fish 
653 |a Datasets 
653 |a Aquaculture 
653 |a Image processing 
653 |a Labor costs 
653 |a Morphology 
653 |a Underwater 
653 |a Efficiency 
653 |a Semantics 
653 |a Invasive fish 
700 1 |a Zhang Zhouming  |u College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; wangcan@fafu.edu.cn (C.W.); 12312098008@fafu.edu.cn (Z.Z.); 52412047028@fafu.edu.cn (N.L.) 
700 1 |a Shao Jianchun  |u College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; shaojianchun16@mails.ucas.ac.cn 
700 1 |a Liao Naiyu  |u College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; wangcan@fafu.edu.cn (C.W.); 12312098008@fafu.edu.cn (Z.Z.); 52412047028@fafu.edu.cn (N.L.) 
700 1 |a Que Pengrong  |u School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 52462047011@fafu.edu.cn 
700 1 |a Kong Xiangzeng  |u College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; wangcan@fafu.edu.cn (C.W.); 12312098008@fafu.edu.cn (Z.Z.); 52412047028@fafu.edu.cn (N.L.) 
700 1 |a Zhang, Tingting  |u School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 52462047011@fafu.edu.cn 
773 0 |t Fishes  |g vol. 10, no. 12 (2025), p. 613-638 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286281018/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286281018/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286281018/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch