Heat Transfer Prediction for Internal Flow Condensation in Inclined Tubes

Guardado en:
Detalles Bibliográficos
Publicado en:Fluids vol. 10, no. 12 (2025), p. 326-361
Autor principal: Corrêa, Mateus Henrique
Otros Autores: Ferrares Victor Gouveia, Costa, Alexandre Garcia, Donatoni Matheus Medeiros, Mani, Marinheiro Maurício, Marchetto Daniel Borba, Tibiriçá, Cristiano Bigonha
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286281102
003 UK-CbPIL
022 |a 2311-5521 
024 7 |a 10.3390/fluids10120326  |2 doi 
035 |a 3286281102 
045 2 |b d20250101  |b d20251231 
100 1 |a Corrêa, Mateus Henrique  |u Laboratory of Thermal Engineering and Fluid Systems (LETeF), Department of Mechanical Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, São Carlos 13566-590, SP, Brazil 
245 1 |a Heat Transfer Prediction for Internal Flow Condensation in Inclined Tubes 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study investigates the heat transfer coefficient (HTC) during flow condensation inside smooth inclined tubes, analyzing the combined effects of flow orientation, fluid properties and flow characteristics on the thermal performance. The literature review indicates that the channel inclination effect on the HTC remains insufficiently understood, highlighting the need for further investigation. Thus, a comprehensive experimental database comprising 4944 data points was compiled from 24 studies, including all flow directions, from upward, to horizontal, downward, and intermediate orientations. The study reveals that the influence of flow inclination on the HTC can be ruled by a criterion based on the liquid film thickness Froude number, <inline-formula>Frδ</inline-formula>. At <inline-formula>Frδ</inline-formula> > 4.75, the effect of flow inclination becomes negligible, while under <inline-formula>Frδ</inline-formula> < 4.75, the inclination can have a considerable effect on the HTC. The experimental data show that at low Froude numbers, upward flow typically exhibits higher HTC compared to downward flow, attributed to enhanced interfacial turbulence caused by opposing gravitational and shear forces. In contrast, under vertical downward flow, the annular pattern is more prominent, with reduced interfacial disturbances, limiting HTC performance. The compiled experimental database for inclined channels was compared against an update list of prediction methods, including seven correlations incorporating the inclination angle as an input parameter. Additionally, a new simple correction factor including the effect of inclined tubes was proposed based on the flow inclination angle and on the liquid film thickness Froude number. The proposed correction factor improved the prediction of well-ranked correlations in the literature by over 20% for stratified flow pattern conditions and by more than 5% for low Froude number values. These findings present new insights into how tube inclination can affect heat transfer in a two-phase flow. 
653 |a Flow distribution 
653 |a Flow characteristics 
653 |a Fluid flow 
653 |a Inclination angle 
653 |a Horizontal orientation 
653 |a Two phase flow 
653 |a Tubes 
653 |a Stratified flow 
653 |a Data points 
653 |a Literature reviews 
653 |a Heat transfer 
653 |a Flow pattern 
653 |a Velocity 
653 |a Shear forces 
653 |a Condensers 
653 |a Temperature 
653 |a Heat transfer coefficients 
653 |a Film thickness 
653 |a Databases 
653 |a Internal flow 
653 |a Froude number 
653 |a Multiphase flow 
653 |a Nuclear power plants 
700 1 |a Ferrares Victor Gouveia  |u Laboratory of Thermal Engineering and Fluid Systems (LETeF), Department of Mechanical Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, São Carlos 13566-590, SP, Brazil 
700 1 |a Costa, Alexandre Garcia  |u Laboratory of Thermal Engineering and Fluid Systems (LETeF), Department of Mechanical Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, São Carlos 13566-590, SP, Brazil 
700 1 |a Donatoni Matheus Medeiros  |u Laboratory of Dynamics, Department of Mechanical Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, São Carlos 13566-590, SP, Brazil 
700 1 |a Mani, Marinheiro Maurício  |u Laboratory of Thermal Engineering and Fluid Systems (LETeF), Department of Mechanical Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, São Carlos 13566-590, SP, Brazil 
700 1 |a Marchetto Daniel Borba  |u Laboratory of Thermal Engineering and Fluid Systems (LETeF), Department of Mechanical Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, São Carlos 13566-590, SP, Brazil 
700 1 |a Tibiriçá, Cristiano Bigonha  |u Laboratory of Thermal Engineering and Fluid Systems (LETeF), Department of Mechanical Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, São Carlos 13566-590, SP, Brazil 
773 0 |t Fluids  |g vol. 10, no. 12 (2025), p. 326-361 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286281102/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286281102/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286281102/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch