A Multi-Sensor Fusion Approach for the Assessment of Water Stress in Woody Plants

Guardado en:
Detalles Bibliográficos
Publicado en:Forests vol. 16, no. 12 (2025), p. 1785-1808
Autor principal: Zhu, Jun
Otros Autores: Qin Shihao, Liu, Yanyi, Fu Qiang, Wu, Yin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286296684
003 UK-CbPIL
022 |a 1999-4907 
024 7 |a 10.3390/f16121785  |2 doi 
035 |a 3286296684 
045 2 |b d20251201  |b d20251231 
084 |a 231463  |2 nlm 
100 1 |a Zhu, Jun  |u The College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China; zhu_jun843399@njfu.edu.cn (J.Z.); aianhao@njfu.edu.cn (S.Q.); yyliu@njfu.edu.cn (Y.L.) 
245 1 |a A Multi-Sensor Fusion Approach for the Assessment of Water Stress in Woody Plants 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Climate change poses significant threats to forest ecosystems, with drought stress being a major factor affecting tree growth and survival. The accurate and early diagnosis of plant water status is, therefore, critical for advancing climate-smart forestry. However, traditional monitoring approaches often rely on single-sensor data or manual field surveys, limiting their capacity to comprehensively capture the complex physiological and structural dynamics of plants under water deficit. To address this gap, this study developed an indoor multi-sensor phenotyping platform, based on a three-axis mobile truss system, which integrates a hyperspectral camera, a thermal infrared imager, and a LiDAR scanner for coordinated high-throughput data acquisition. We further propose a novel hybrid model, the Whale Optimization Algorithm-based Multi-Kernel Extreme Learning Machine (WOA-MK-ELM), which enhances classification robustness by adaptively fusing hyperspectral and thermal features within a dual Gaussian kernel space. We use Perilla frutescens as a model species, achieving an accuracy of 93.03%, an average precision of 93.11%, an average recall of 94.04%, and an F1-score of 0.94 in water stress degree classification. The results demonstrate that the proposed framework not only achieves high prediction accuracy but also provides a powerful prototype and a robust analytical approach for smart forestry and early warning systems. 
653 |a Woody plants 
653 |a Physiology 
653 |a Climate change 
653 |a Data acquisition 
653 |a Warning systems 
653 |a Classification 
653 |a Water stress 
653 |a Forestry 
653 |a Early warning systems 
653 |a Lidar 
653 |a Water 
653 |a Data processing 
653 |a Machine learning 
653 |a Irrigation 
653 |a Heat detection 
653 |a Stress analysis 
653 |a Drought 
653 |a Thermography 
653 |a Accuracy 
653 |a Remote sensing 
653 |a Forest ecosystems 
653 |a Climate-smart agriculture 
653 |a Sensors 
653 |a Water deficit 
653 |a Design 
653 |a Terrestrial ecosystems 
653 |a Infrared cameras 
653 |a Multisensor fusion 
653 |a Environmental 
700 1 |a Qin Shihao  |u The College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China; zhu_jun843399@njfu.edu.cn (J.Z.); aianhao@njfu.edu.cn (S.Q.); yyliu@njfu.edu.cn (Y.L.) 
700 1 |a Liu, Yanyi  |u The College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China; zhu_jun843399@njfu.edu.cn (J.Z.); aianhao@njfu.edu.cn (S.Q.); yyliu@njfu.edu.cn (Y.L.) 
700 1 |a Fu Qiang  |u Yibin Forestry and Bamboo Industry Research Institute, Yibin 644005, China; fuqiang.bamboo@gmail.com 
700 1 |a Wu, Yin  |u The College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China; zhu_jun843399@njfu.edu.cn (J.Z.); aianhao@njfu.edu.cn (S.Q.); yyliu@njfu.edu.cn (Y.L.) 
773 0 |t Forests  |g vol. 16, no. 12 (2025), p. 1785-1808 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286296684/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286296684/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286296684/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch