A Multi-Agent Deep Reinforcement Learning Method with Diversified Policies for Continuous Location of Express Delivery Stations Under Heterogeneous Scenarios

Uloženo v:
Podrobná bibliografie
Vydáno v:ISPRS International Journal of Geo-Information vol. 14, no. 12 (2025), p. 461-484
Hlavní autor: Lyu Yijie
Další autoři: Tang Zhongan, Li, Yalun, Liu Baoju, Deng, Min, Wu, Guohua
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3286304186
003 UK-CbPIL
022 |a 2220-9964 
024 7 |a 10.3390/ijgi14120461  |2 doi 
035 |a 3286304186 
045 2 |b d20251201  |b d20251231 
084 |a 231472  |2 nlm 
100 1 |a Lyu Yijie  |u School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; lyuyijie@csu.edu.cn (Y.L.); 255007012@csu.edu.cn (Y.L.); 
245 1 |a A Multi-Agent Deep Reinforcement Learning Method with Diversified Policies for Continuous Location of Express Delivery Stations Under Heterogeneous Scenarios 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Rational location planning of express delivery stations (EDS) is crucial for enhancing the quality and efficiency of urban logistics. The spatial heterogeneity of logistics demand across urban areas highlights the importance of adopting a scientific approach to EDS location planning. To tackle the issue of strategy misalignment caused by heterogeneous demand scenarios, this study proposes a continuous location method for EDS based on multi-agent deep reinforcement learning. The method formulates the location problem as a continuous maximum coverage model and trains multiple agents with diverse policies to enable adaptive decision-making in complex urban environments. A direction-controlled continuous movement mechanism is introduced to facilitate an efficient search and high-precision location planning. Additionally, a perception system based on local observation is designed to rapidly capture heterogeneous environmental features, while a local–global reward feedback mechanism is established to balance localized optimization with overall system benefits. Case studies conducted in Fuzhou, Fujian Province and Shenzhen, Guangdong Province, China, demonstrate that the proposed method significantly outperforms traditional heuristic methods and the single-agent deep reinforcement learning method in terms of both coverage rate and computational efficiency, achieving an increase in population coverage of 9.63 and 15.99 percentage points, respectively. Furthermore, by analyzing the relationship between the number of stations and coverage effectiveness, this study identifies optimal station configuration thresholds for different urban areas. The findings provide a scientific basis for investment decision-making and location planning in EDS construction. 
653 |a Integer programming 
653 |a Misalignment 
653 |a Urban environments 
653 |a Collaboration 
653 |a Adaptability 
653 |a Optimization 
653 |a Order quantity 
653 |a Decision making 
653 |a Heuristic 
653 |a Urban areas 
653 |a Reinforcement 
653 |a Heterogeneity 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Patchiness 
653 |a Policies 
653 |a Mathematical programming 
653 |a Neural networks 
653 |a Spatial heterogeneity 
653 |a Learning 
653 |a Linear programming 
653 |a Methods 
653 |a Multiagent systems 
653 |a Electronic commerce 
653 |a Algorithms 
653 |a Logistics 
653 |a Deep learning 
700 1 |a Tang Zhongan  |u The Third Surveying and Mapping Institute of Hunan Province, Changsha 410018, China 
700 1 |a Li, Yalun  |u School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; lyuyijie@csu.edu.cn (Y.L.); 255007012@csu.edu.cn (Y.L.); 
700 1 |a Liu Baoju  |u School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; lyuyijie@csu.edu.cn (Y.L.); 255007012@csu.edu.cn (Y.L.); 
700 1 |a Deng, Min  |u School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; lyuyijie@csu.edu.cn (Y.L.); 255007012@csu.edu.cn (Y.L.); 
700 1 |a Wu, Guohua  |u School of Automation, Central South University, Changsha 410083, China 
773 0 |t ISPRS International Journal of Geo-Information  |g vol. 14, no. 12 (2025), p. 461-484 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286304186/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286304186/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286304186/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch