Fog Computing and Graph-Based Databases for Remote Health Monitoring in IoMT Settings

Salvato in:
Dettagli Bibliografici
Pubblicato in:IoT vol. 6, no. 4 (2025), p. 76-92
Autore principale: Yousif, Karrar A
Altri autori: Calvillo-Arbizu Jorge, Lara-Romero, Agustín W
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3286306259
003 UK-CbPIL
022 |a 2624-831X 
024 7 |a 10.3390/iot6040076  |2 doi 
035 |a 3286306259 
045 2 |b d20251001  |b d20251231 
100 1 |a Yousif, Karrar A  |u Department of Telematics Engineering, University of Sevilla, 41092 Sevilla, Spain; karyou@alum.us.es (K.A.Y.); jcalvillo@us.es (J.C.-A.) 
245 1 |a Fog Computing and Graph-Based Databases for Remote Health Monitoring in IoMT Settings 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Remote patient monitoring is a promising and transformative pillar of healthcare. However, deploying such systems at a scale—across thousands of patients and Internet of Medical Things (IoMT) devices—demands robust, low-latency, and scalable storage systems. This research examines the application of Fog Computing for remote patient monitoring in IoMT settings, where a large volume of data, low latency, and secure management of confidential healthcare information are essential. We propose a four-layer IoMT–Fog–Cloud architecture in which Fog nodes, equipped with graph-based databases (Neo4j), conduct local processing, filtering, and integration of heterogeneous health data before transmitting it to cloud servers. To assess the viability of our approach, we implemented a containerised Fog node and simulated multiple patient-device networks using a real-world dataset. System performance was evaluated using 11 scenarios with varying numbers of devices and data transmission frequencies. Performance metrics include CPU load, memory footprint, and query latency. The results demonstrate that Neo4j can efficiently ingest and query millions of health observations with an acceptable latency of less than 500 ms, even in extreme scenarios involving more than 12,000 devices transmitting data every 50 ms. The resource consumption remained well below the critical thresholds, highlighting the suitability of the proposed approach for Fog nodes. Combining Fog computing and Neo4j is a novel approach that meets the latency and real-time data ingestion requirements of IoMT environments. Therefore, it is suitable for supporting delay-sensitive monitoring programmes, where rapid detection of anomalies is critical (e.g., a prompt response to cardiac emergencies or early detection of respiratory deterioration in patients with chronic obstructive pulmonary disease), even at a large scale. 
653 |a Physiology 
653 |a Patients 
653 |a Electronic health records 
653 |a Interoperability 
653 |a Edge computing 
653 |a Communication 
653 |a Sensors 
653 |a Databases 
653 |a Data processing 
653 |a Blockchain 
653 |a Personal health 
653 |a Cloud computing 
653 |a Monitoring systems 
653 |a Chronic obstructive pulmonary disease 
653 |a Heart rate 
700 1 |a Calvillo-Arbizu Jorge  |u Department of Telematics Engineering, University of Sevilla, 41092 Sevilla, Spain; karyou@alum.us.es (K.A.Y.); jcalvillo@us.es (J.C.-A.) 
700 1 |a Lara-Romero, Agustín W  |u Department of Telematics Engineering, University of Sevilla, 41092 Sevilla, Spain; karyou@alum.us.es (K.A.Y.); jcalvillo@us.es (J.C.-A.) 
773 0 |t IoT  |g vol. 6, no. 4 (2025), p. 76-92 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286306259/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286306259/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286306259/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch