CLFF-NER: A Cross-Lingual Feature Fusion Model for Named Entity Recognition in the Traditional Chinese Festival Culture Domain

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Informatics vol. 12, no. 4 (2025), p. 136-154
المؤلف الرئيسي: Yang Shenghe
مؤلفون آخرون: He, Kun, Li, Wei, He, Yingying
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3286306417
003 UK-CbPIL
022 |a 2227-9709 
024 7 |a 10.3390/informatics12040136  |2 doi 
035 |a 3286306417 
045 2 |b d20251001  |b d20251231 
084 |a 231473  |2 nlm 
100 1 |a Yang Shenghe  |u School of Computer Science and Technology, Changchun Normal University, Changchun 130000, China; qx7202311022@stu.ccsfu.edu.cn (S.Y.); qx202411009@stu.ccsfu.edu.cn (Y.H.) 
245 1 |a CLFF-NER: A Cross-Lingual Feature Fusion Model for Named Entity Recognition in the Traditional Chinese Festival Culture Domain 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the rapid development of information technology, there is an increasing demand for the digital preservation of traditional festival culture and the extraction of relevant knowledge. However, existing research on Named Entity Recognition (NER) for Chinese traditional festival culture lacks support from high-quality corpora and dedicated model methods. To address this gap, this study proposes a Named Entity Recognition model, CLFF-NER, which integrates multi-source heterogeneous information. The model operates as follows: first, Multilingual BERT is employed to obtain the contextual semantic representations of Chinese and English sentences. Subsequently, a Multiconvolutional Kernel Network (MKN) is used to extract the local structural features of entities. Then, a Transformer module is introduced to achieve cross-lingual, cross-attention fusion of Chinese and English semantics. Furthermore, a Graph Neural Network (GNN) is utilized to selectively supplement useful English information, thereby alleviating the interference caused by redundant information. Finally, a gating mechanism and Conditional Random Field (CRF) are combined to jointly optimize the recognition results. Experiments were conducted on the public Chinese Festival Culture Dataset (CTFCDataSet), and the model achieved 89.45%, 90.01%, and 89.73% in precision, recall, and F1 score, respectively—significantly outperforming a range of mainstream baseline models. Meanwhile, the model also demonstrated competitive performance on two other public datasets, Resume and Weibo, which verifies its strong cross-domain generalization ability. 
653 |a Datasets 
653 |a Semantics 
653 |a Deep learning 
653 |a Culture 
653 |a Conditional random fields 
653 |a Graph neural networks 
653 |a Neural networks 
653 |a Horse racing 
653 |a Natural language processing 
653 |a Multilingualism 
653 |a Chinese culture 
653 |a Festivals 
653 |a Cultural heritage 
700 1 |a He, Kun  |u School of Computer Science and Technology, Changchun Normal University, Changchun 130000, China; qx7202311022@stu.ccsfu.edu.cn (S.Y.); qx202411009@stu.ccsfu.edu.cn (Y.H.) 
700 1 |a Li, Wei  |u School of Computer Science and Technology, Sichuan Normal University, Chengdu 610000, China; liw@sicnu.edu.cn 
700 1 |a He, Yingying  |u School of Computer Science and Technology, Changchun Normal University, Changchun 130000, China; qx7202311022@stu.ccsfu.edu.cn (S.Y.); qx202411009@stu.ccsfu.edu.cn (Y.H.) 
773 0 |t Informatics  |g vol. 12, no. 4 (2025), p. 136-154 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286306417/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286306417/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286306417/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch