A Machine Learning Framework for Harvesting and Harmonizing Cultural and Touristic Data

保存先:
書誌詳細
出版年:Information vol. 16, no. 12 (2025), p. 1038-1083
第一著者: Deligiannis Kimon
その他の著者: Tryfonopoulos Christos, Raftopoulou Paraskevi, Vassilakis Costas, Kaffes Vassilis, Skiadopoulos Spiros
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3286306681
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16121038  |2 doi 
035 |a 3286306681 
045 2 |b d20251201  |b d20251231 
084 |a 231474  |2 nlm 
100 1 |a Deligiannis Kimon 
245 1 |a A Machine Learning Framework for Harvesting and Harmonizing Cultural and Touristic Data 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Cultural and touristic information is increasingly available through a multitude of heterogeneous sources, including official repositories, community platforms, and open data initiatives. While prominent landmarks are typically covered across sources, less-known attractions are also documented with varying degrees of detail, resulting in fragmented, overlapping, or complementary content. To enable integrated access to this wealth of information, harvesting and consolidation mechanisms are required to collect, reconcile, and unify distributed content referring to the same entities. This paper presents a machine learning-driven framework for harvesting, homogenizing, and augmenting cultural and touristic data across multilingual sources. Our approach addresses entity resolution, duplication detection, and content harmonization, laying the foundation for enriched, unified representations of attractions and points of interest. The framework is designed to support scalable integration pipelines and can be deployed in applications aimed at tourism promotion, digital heritage, and smart travel services. 
653 |a Machine learning 
653 |a Culture 
653 |a Sentiment analysis 
653 |a Data mining 
653 |a Multilingual systems 
653 |a Small & medium sized enterprises-SME 
653 |a Social networks 
653 |a User generated content 
653 |a Homogenization 
653 |a Data collection 
653 |a Natural language processing 
653 |a Multilingualism 
653 |a Tourism 
653 |a Cultural heritage 
700 1 |a Tryfonopoulos Christos 
700 1 |a Raftopoulou Paraskevi 
700 1 |a Vassilakis Costas 
700 1 |a Kaffes Vassilis 
700 1 |a Skiadopoulos Spiros 
773 0 |t Information  |g vol. 16, no. 12 (2025), p. 1038-1083 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286306681/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286306681/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286306681/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch