Ternary LWE Key Search: A New Frontier for Quantum Combinatorial Attacks

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Information vol. 16, no. 12 (2025), p. 1085-1115
Tác giả chính: Yang, Li
Được phát hành:
MDPI AG
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3286306833
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16121085  |2 doi 
035 |a 3286306833 
045 2 |b d20251201  |b d20251231 
084 |a 231474  |2 nlm 
100 1 |a Yang, Li 
245 1 |a Ternary LWE Key Search: A New Frontier for Quantum Combinatorial Attacks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The Learning with Errors (LWE) problem, particularly its efficient ternary variant where secrets and errors are small, is a fundamental building block for numerous post-quantum cryptographic schemes. Combinatorial attacks provide a potent approach to cryptanalyzing ternary LWE. While classical attacks have achieved complexities close to their asymptotic <inline-formula>S0.25</inline-formula> bound for a search space of size <inline-formula>S</inline-formula>, their quantum counterparts have faced a significant gap: the attack by van Hoof et al. (vHKM) only reached a concrete complexity of <inline-formula>S0.251</inline-formula>, far from its asymptotic promise of <inline-formula>S0.193</inline-formula>. This work introduces an efficient quantum combinatorial attack that substantially narrows this gap. We present a quantum walk adaptation of the locality-sensitive hashing algorithm by Kirshanova and May, which fundamentally removes the need for guessing error coordinates—the primary source of inefficiency in the vHKM approach. This crucial improvement allows our attack to achieve a concrete complexity of approximately <inline-formula>S0.225</inline-formula>, markedly improving over prior quantum combinatorial methods. For concrete parameters of major schemes including NTRU, BLISS, and GLP, our method demonstrates substantial runtime improvements over the vHKM attack, achieving speedup factors ranging from <inline-formula>216</inline-formula> to <inline-formula>260</inline-formula> across different parameter sets and establishing the new state-of-the-art for quantum combinatorial attacks. As a second contribution, we address the challenge of polynomial quantum memory constraints. We develop a hybrid approach combining the Kirshanova–May framework with a quantum claw-finding technique, requiring only <inline-formula>O(n)</inline-formula> qubits while utilizing exponential classical memory. This work provides the first comprehensive concrete security analysis of real-world LWE-based schemes under such practical quantum resource constraints, offering crucial insights for post-quantum security assessments. Our results reveal a nuanced landscape where our combinatorial attacks are superior for small-weight parameters, while lattice-based attacks maintain an advantage for others. 
653 |a Cryptography 
653 |a Quantum phenomena 
653 |a Security 
653 |a Combinatorial analysis 
653 |a Hash based algorithms 
653 |a Polynomials 
653 |a Asymptotic properties 
653 |a Codes 
653 |a Algorithms 
653 |a Complexity 
653 |a Heuristic 
653 |a Constraints 
653 |a Parameters 
653 |a Qubits (quantum computing) 
773 0 |t Information  |g vol. 16, no. 12 (2025), p. 1085-1115 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286306833/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286306833/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286306833/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch