Digital Language Markers Differentiate Atypical Alzheimer's Disease Variants: Insights into Cognitive and Anatomical Mechanisms

Na minha lista:
Detalhes bibliográficos
Publicado no:Alzheimer's & Dementia vol. 21 (Dec 1, 2025)
Autor principal: Rezaii, Neguine
Outros Autores: Katsumi, Yuta, Hochberg, Daisy, Watson, Nneka, Quimby, Megan, Dickerson, Brad C., Putcha, Deepti
Publicado em:
John Wiley & Sons, Inc.
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3286306991
003 UK-CbPIL
022 |a 1552-5260 
022 |a 1552-5279 
024 7 |a 10.1002/alz70856_098249  |2 doi 
035 |a 3286306991 
045 0 |b d20251201 
100 1 |a Rezaii, Neguine  |u Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, 
245 1 |a Digital Language Markers Differentiate Atypical Alzheimer's Disease Variants: Insights into Cognitive and Anatomical Mechanisms 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a Background The computational analysis of language has demonstrated significant diagnostic value in typical older‐onset Alzheimer's disease (AD). Here, we investigate whether digital language markers can distinguish between variants of atypical AD, including logopenic variant Primary Progressive Aphasia (lvPPA) and Posterior Cortical Atrophy (PCA). Both lvPPA and PCA patients exhibit deficits in spontaneous speech, such as difficulty accessing low‐frequency words. However, these deficits likely arise from distinct mechanisms: lvPPA patients have an intrinsic deficit in lexicosemantic retrieval, while deficits in PCA may be secondary to visual processing abnormalities. We hypothesize that distinct digital language markers can differentiate between these variants and provide insight into these cognitive mechanisms. Methods We analyzed the spoken language of 29 healthy controls, 52 lvPPA participants, and 32 PCA participants during two tasks: 1) a picture description task requiring a high visual demand and 2) a job description task with minimal visual demand. Computational methods quantified word frequency and the total number of visual content words retrieved from the picture. Tau PET imaging was used to investigate the anatomical correlates of digital language markers in the picture description task. Results Both lvPPA and PCA participants demonstrated difficulty accessing low‐frequency words during the picture description task. In the job description task, lvPPA participants continued to struggle to access low‐frequency words while PCA participants were comparable to healthy controls. Furthermore, although both AD variants retrieved fewer visual content words from the picture compared to healthy controls, PCA participants produced significantly fewer words, underscoring their challenges in processing visual information. We found that word frequency positively correlated with tau deposition in distinct regions in lvPPA and PCA during the picture description task. Furthermore, the total number of visual content words was found to anti‐correlate with tau deposition in occipital visual processing areas in PCA but not in lvPPA. Conclusion While both lvPPA and PCA patients struggle with low‐frequency word retrieval, this deficit in lvPPA stems from intrinsic lexicosemantic impairments, whereas in PCA, it is secondary to difficulties in visual processing. These results highlight the significant utility of digital language markers in differentiating between AD variants and understanding underlying language mechanisms. 
653 |a Spontaneous speech 
653 |a Language 
653 |a Alzheimer's disease 
653 |a Aphasia 
653 |a Content words 
653 |a Politics 
653 |a Spoken language 
653 |a Retrieval 
653 |a Cognition 
653 |a Lexical semantics 
653 |a Word frequency 
653 |a Job descriptions 
653 |a Lexical access 
653 |a Visual processing 
653 |a Speech 
653 |a Variants 
653 |a Anatomy 
653 |a Language attitudes 
653 |a Disease 
653 |a Patients 
700 1 |a Katsumi, Yuta  |u Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 
700 1 |a Hochberg, Daisy  |u Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, 
700 1 |a Watson, Nneka  |u Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 
700 1 |a Quimby, Megan  |u Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, 
700 1 |a Dickerson, Brad C.  |u Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 
700 1 |a Putcha, Deepti  |u Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 
773 0 |t Alzheimer's & Dementia  |g vol. 21 (Dec 1, 2025) 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286306991/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3286306991/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286306991/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch