Artificial Intelligence in Biomedical 3D Printing: Mapping the Evidence

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Journal of Manufacturing and Materials Processing vol. 9, no. 12 (2025), p. 407-440
Κύριος συγγραφέας: Tănase, Maria
Άλλοι συγγραφείς: Veres, Cristina, Szabo Dan-Alexandru
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3286309973
003 UK-CbPIL
022 |a 2504-4494 
024 7 |a 10.3390/jmmp9120407  |2 doi 
035 |a 3286309973 
045 2 |b d20250101  |b d20251231 
100 1 |a Tănase, Maria  |u Mechanical Engineering Department, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania; maria.tanase@upg-ploiesti.ro 
245 1 |a Artificial Intelligence in Biomedical 3D Printing: Mapping the Evidence 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study provides an integrated synthesis of Artificial Intelligence (AI) applications in Biomedical 3D Printing, mapping the conceptual and structural evolution of this rapidly emerging field. The bibliometric analysis, based on 229 publications indexed in the Web of Science Core Collection (2018–2025) and visualised in CiteSpace, identifies three interconnected research domains: AI-driven design and process optimisation, data-assisted bioprinting for tissue engineering, and the development of smart and adaptive materials enabling 4D functionalities. The results highlight a clear progression from algorithmic control of additive manufacturing parameters toward predictive modelling, deep learning, and autonomous fabrication systems. Leading contributors include China, India, and the USA, while journals such as Applied Sciences, Polymers, and Advanced Materials act as major dissemination platforms. Emerging clusters around “4D printing”, “deep learning”, and “shape memory polymers” indicate a shift toward intelligent, sustainable, and personalised biomanufacturing. In addition, a qualitative synthesis of the most influential papers complements the bibliometric mapping, providing interpretative depth on the scientific core driving this interdisciplinary evolution. Overall, the study reveals the consolidation of a multidisciplinary research ecosystem in which computational intelligence and biomedical engineering converge to advance the next generation of adaptive medical fabrication technologies. 
653 |a Smart materials 
653 |a Polymers 
653 |a Citations 
653 |a Datasets 
653 |a Evolution 
653 |a Boolean 
653 |a Advanced manufacturing technologies 
653 |a Multidisciplinary research 
653 |a Interdisciplinary aspects 
653 |a Mapping 
653 |a Three dimensional printing 
653 |a Machine learning 
653 |a Synthesis 
653 |a Shape memory 
653 |a Additive manufacturing 
653 |a Design techniques 
653 |a Bibliometrics 
653 |a Artificial intelligence 
653 |a Prediction models 
653 |a Cocitation 
653 |a Health care 
653 |a Publications 
653 |a Biomedical engineering 
653 |a 3-D printers 
653 |a Tissue engineering 
653 |a Data collection 
653 |a Algorithms 
653 |a Tissues 
653 |a Deep learning 
653 |a Design optimization 
653 |a Precision medicine 
700 1 |a Veres, Cristina  |u Department of Industrial Engineering and Management, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Nicolae Iorga Street 1, 540088 Targu Mures, Romania 
700 1 |a Szabo Dan-Alexandru  |u Department M2, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gheorghe Marinescu Street 38, 540139 Targu Mures, Romania; dan-alexandru.szabo@umfst.ro 
773 0 |t Journal of Manufacturing and Materials Processing  |g vol. 9, no. 12 (2025), p. 407-440 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286309973/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286309973/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286309973/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch