Analysis of Core Temperature Dynamics in Multi-Core Processors

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Journal of Low Power Electronics and Applications vol. 15, no. 4 (2025), p. 68-86
Váldodahkki: Ladge Leena
Eará dahkkit: Srinivasa, Rao Y
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3286310030
003 UK-CbPIL
022 |a 2079-9268 
024 7 |a 10.3390/jlpea15040068  |2 doi 
035 |a 3286310030 
045 2 |b d20251001  |b d20251231 
084 |a 231478  |2 nlm 
100 1 |a Ladge Leena  |u Department of Information Technology, SIES Graduate School of Technology, University of Mumbai, Navi Mumbai 400706, India 
245 1 |a Analysis of Core Temperature Dynamics in Multi-Core Processors 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a As technologies like Artificial Intelligence, Blockchain, Virtual Reality, etc., are advancing, there is a high requirement for High-Performance Computers and multi-core processors to find many applications in today’s Cyber–Physical World. Subsequently, multi-core systems have now become ubiquitous. The core temperature is affected by intensive computational tasks, parallel execution of tasks, thermal coupling effects, and limitations on cooling methods. High temperatures may further decrease the performance of the chip and the overall system. In this paper, we have studied different parameters related to core performance. The MSI Afterburner utility is used to extract the hardware parameters. Single and multivariate analyses are carried out on core temperature, core usage, and core clock to study the performance of all cores. Single-variate analysis shows the need for action when core temperatures, core usage, and clock speeds exceed threshold values. Multivariate analysis reveals correlations between these parameters, guiding optimization strategies. We have also implemented the ARIMA model for core temperature estimation and obtained an average RMSE of 2.44 °C. Our analysis and ARIMA model for temperature estimation are useful in developing smart scheduling algorithms that optimize thermal management and energy efficiency. 
653 |a Software 
653 |a Afterburners 
653 |a Trends 
653 |a Microprocessors 
653 |a Optimization 
653 |a Thermal coupling 
653 |a Performance evaluation 
653 |a Workloads 
653 |a Energy consumption 
653 |a High temperature 
653 |a High performance computing 
653 |a Processing speed 
653 |a Scheduling 
653 |a Machine learning 
653 |a Embedded systems 
653 |a Virtual reality 
653 |a Temperature 
653 |a Energy management 
653 |a Multivariate analysis 
653 |a Energy efficiency 
653 |a Processors 
653 |a Literature reviews 
653 |a Algorithms 
653 |a Thermal management 
653 |a Artificial intelligence 
653 |a Parameters 
700 1 |a Srinivasa, Rao Y  |u Department of Electronics & Telecommunication Engineering, Sardar Patel Institute of Technology, University of Mumbai, Mumbai 400058, India; ysrao@spit.ac.in 
773 0 |t Journal of Low Power Electronics and Applications  |g vol. 15, no. 4 (2025), p. 68-86 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286310030/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286310030/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286310030/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch