A Bidirectional Digital Twin System for Adaptive Manufacturing

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Journal of Manufacturing and Materials Processing vol. 9, no. 12 (2025), p. 400-423
मुख्य लेखक: Heide, Klaas Maximilian
अन्य लेखक: Denkena Berend, Winkler, Martin
प्रकाशित:
MDPI AG
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text + Graphics
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3286310104
003 UK-CbPIL
022 |a 2504-4494 
024 7 |a 10.3390/jmmp9120400  |2 doi 
035 |a 3286310104 
045 2 |b d20250101  |b d20251231 
100 1 |a Heide, Klaas Maximilian 
245 1 |a A Bidirectional Digital Twin System for Adaptive Manufacturing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Digital Twin Systems (DTSs) are increasingly recognized as enablers of data-driven manufacturing, yet many implementations remain limited to monitoring or visualization without closed-loop control. This study presents a fully integrated DTS for CNC milling that emphasizes real-time bidirectional coupling between a real machine and a virtual counterpart as well as the use of machine-native signals. The architecture comprises a physical space defined by a five-axis machining center, a virtual space implemented via a dexel-based technological simulation environment, and a digital thread for continuous data exchange between those. A full-factorial simulation study investigated the influence of dexel density and cycle time on engagement accuracy and runtime, yielding an optimal configuration that minimizes discretization errors while maintaining real-time feasibility. Latency measurements confirmed a mean response time of 34.2 ms, supporting process-parallel decision-making. Two application scenarios in orthopedic implant milling validated the DTS: process force monitoring enabled an automatic machine halt within 28 ms of anomaly detection, while adaptive feed rate control reduced predicted form error by 20 µm. These findings demonstrate that the DTS extends beyond passive monitoring by actively intervening in machining processes; enhancing process reliability and part quality; and establishing a foundation for scalable, interpretable digital twins in regulated manufacturing. 
653 |a Accuracy 
653 |a Data exchange 
653 |a Adaptability 
653 |a Quality control 
653 |a Closed loops 
653 |a Machine tools 
653 |a Predictive control 
653 |a Data processing 
653 |a Aerospace industry 
653 |a Production planning 
653 |a Manufacturing 
653 |a Monitoring 
653 |a Turbines 
653 |a Simulation 
653 |a Adaptive systems 
653 |a Physics 
653 |a Artificial intelligence 
653 |a Digital twins 
653 |a Milling (machining) 
653 |a Sensors 
653 |a Decision making 
653 |a Orthopaedic implants 
653 |a Process controls 
653 |a Cycle time 
653 |a Anomalies 
653 |a Feed rate 
653 |a Machining centres 
653 |a Real time 
653 |a Industry 4.0 
653 |a Feedback control 
653 |a Orthopedics 
653 |a Run time (computers) 
700 1 |a Denkena Berend 
700 1 |a Winkler, Martin 
773 0 |t Journal of Manufacturing and Materials Processing  |g vol. 9, no. 12 (2025), p. 400-423 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286310104/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286310104/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286310104/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch