Dual-Path Convolutional Neural Network with Squeeze-and-Excitation Attention for Lung and Colon Histopathology Classification

Guardado en:
Bibliografiske detaljer
Udgivet i:Journal of Imaging vol. 11, no. 12 (2025), p. 448-465
Hovedforfatter: AlShehri Helala
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3286310264
003 UK-CbPIL
022 |a 2313-433X 
024 7 |a 10.3390/jimaging11120448  |2 doi 
035 |a 3286310264 
045 2 |b d20250101  |b d20251231 
100 1 |a AlShehri Helala 
245 1 |a Dual-Path Convolutional Neural Network with Squeeze-and-Excitation Attention for Lung and Colon Histopathology Classification 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Lung and colon cancers remain among the leading causes of cancer-related mortality worldwide, underscoring the need for rapid and accurate histopathological diagnosis. Manual examination of biopsy slides is often time-consuming and prone to inter-observer variability, which highlights the importance of developing reliable and explainable automated diagnostic systems. This study presents DPCSE-Net, a lightweight dual-path convolutional neural network enhanced with a squeeze-and-excitation (SE) attention mechanism for lung and colon cancer classification. The dual-path structure captures both fine-grained cellular textures and global contextual information through multiscale feature extraction, while the SE attention module adaptively recalibrates channel responses to emphasize discriminative features. To enhance transparency and interpretability, Gradient-weighted Class Activation Mapping (Grad-CAM), attention heatmaps, and Integrated Gradients are employed to visualize class-specific activation patterns and verify that the model’s focus aligns with diagnostically relevant tissue regions. Evaluated on the publicly available LC25000 dataset, DPCSE-Net achieved state-of-the-art performance with 99.88% accuracy and F1-score, while maintaining low computational complexity. Ablation experiments confirmed the contribution of the dual-path design and SE module, and qualitative analyses demonstrated the model’s strong interpretability. These results establish DPCSE-Net as an accurate, efficient, and explainable framework for computer-aided histopathological diagnosis, supporting the broader goals of explainable AI in computer vision. 
653 |a Qualitative analysis 
653 |a Excitation 
653 |a Classification 
653 |a Lungs 
653 |a Artificial intelligence 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Ablation 
653 |a Diagnostic systems 
653 |a Computer vision 
653 |a Modules 
653 |a Colorectal cancer 
653 |a Cellular structure 
653 |a Explainable artificial intelligence 
773 0 |t Journal of Imaging  |g vol. 11, no. 12 (2025), p. 448-465 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286310264/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286310264/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286310264/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch