Deep Learning Approaches for Multi-Class Classification of Phishing Text Messages

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Cybersecurity and Privacy vol. 5, no. 4 (2025), p. 102-118
Autor principal: Munoz, Miriam L
Otros Autores: Islam, Muhammad F
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286310327
003 UK-CbPIL
022 |a 2624-800X 
024 7 |a 10.3390/jcp5040102  |2 doi 
035 |a 3286310327 
045 2 |b d20251001  |b d20251231 
100 1 |a Munoz, Miriam L 
245 1 |a Deep Learning Approaches for Multi-Class Classification of Phishing Text Messages 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Phishing attacks, particularly Smishing (SMS phishing), have become a major cybersecurity threat, with attackers using social engineering tactics to take advantage of human vulnerabilities. Traditional detection models often struggle to keep up with the evolving sophistication of these attacks, especially on devices with constrained computational resources. This research proposes a chain transformer model that integrates GPT-2 for synthetic data generation and BERT for embeddings to detect Smishing within a multiclass dataset, including minority smishing variants. By utilizing compact, open-source transformer models designed to balance accuracy and efficiency, this study explores improved detection of phishing threats on text-based platforms. Experimental results demonstrate an accuracy rate exceeding 97% in detecting phishing attacks across multiple categories. The proposed chained transformer model achieved an F1-score of 0.97, precision of 0.98, and recall of 0.96, indicating strong overall performance. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a URLs 
653 |a Neural networks 
653 |a Classification 
653 |a Cybersecurity 
653 |a Content analysis 
653 |a Design 
653 |a Natural language processing 
653 |a Instant messaging 
653 |a Privacy 
653 |a Cybercrime 
653 |a Efficiency 
653 |a Pattern recognition 
653 |a Text messaging 
700 1 |a Islam, Muhammad F 
773 0 |t Journal of Cybersecurity and Privacy  |g vol. 5, no. 4 (2025), p. 102-118 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286310327/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286310327/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286310327/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch