Novel Development of FDM-Based Wrist Hybrid Splint Using Numerical Computation Enhanced with Material and Damage Model

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Manufacturing and Materials Processing vol. 9, no. 12 (2025), p. 408-428
Autor principal: Papadakis Loucas
Altres autors: Avraam Stelios, Mohd Izhar Muhammad Zulhilmi, Prajadhiana Keval Priapratama, Manurung Yupiter H. P., Photiou Demetris
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3286310468
003 UK-CbPIL
022 |a 2504-4494 
024 7 |a 10.3390/jmmp9120408  |2 doi 
035 |a 3286310468 
045 2 |b d20250101  |b d20251231 
100 1 |a Papadakis Loucas  |u Department of Mechanical Engineering, Frederick University, Nicosia 1036, Cyprus; l.papadakis@frederick.ac.cy (L.P.); s.avraam@simlead.eu (S.A.) 
245 1 |a Novel Development of FDM-Based Wrist Hybrid Splint Using Numerical Computation Enhanced with Material and Damage Model 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Additive manufacturing has increasingly become a transformative approach in the design and fabrication of personalized medical devices, offering improved adaptability, reduced production time, and enhanced patient-specific functionality. Within this framework, simulation-driven design plays a critical role in ensuring the structural reliability and performance of orthopedic supports before fabrication. This research study delineates the novel development of a wrist hybrid splint (WHS) which has a simulation-based design and was additively manufactured using fused deposition modeling (FDM). The primary material selected for this purpose was polylactic acid (PLA), recognized for its biocompatibility and structural integrity in medical applications. Prior to the commencement of the actual FDM process, an extensive pre-analysis was imperative, involving the application of nonlinear numerical models aiming at replicating the mechanical response of the WHS in respect to different deposition configurations. The methodology encompassed the evaluation of a sophisticated material model incorporating a damage mechanism which was grounded in experimental data derived from meticulous tensile and three-point bending testing of samples with varying FDM process parameters, namely nozzle diameter, layer thickness, and deposition orientation. The integration of custom subroutines with utility routines was coded with a particular emphasis on maximum stress thresholds to ensure the fidelity and reliability of the simulation outputs on small scale samples in terms of their elasticity and strength. After the formulation and validation of these computational models, a comprehensive simulation of a full-scale, finite element (FE) model of two WHS design variations was conducted, the results of which were aligned with the stringent requirements set forth by the product specifications, ensuring comfortable and safe usage. Based on the results of this study, the final force comparison between the numerical simulation and experimental measurements demonstrated a discrepancy of less than 2%. This high level of agreement highlights the accuracy of the employed methodologies and validates the effectiveness of the WHS simulation and fabrication approach. The research also concludes with a strong affirmation of the material model with a damage mechanism, substantiating its applicability and effectiveness in future manufacturing of the WHS, as well as other orthopedic support devices through an appropriate selection of FDM parameters. 
653 |a Mechanical properties 
653 |a Finite element method 
653 |a Software 
653 |a Fused deposition modeling 
653 |a Mathematical analysis 
653 |a Investigations 
653 |a Numerical analysis 
653 |a Damage assessment 
653 |a Medical devices 
653 |a Splints 
653 |a Polylactic acid 
653 |a Orthopedics 
653 |a Manufacturing 
653 |a Fabrication 
653 |a Additive manufacturing 
653 |a Computer simulation 
653 |a Simulation 
653 |a Tensile strength 
653 |a Product specifications 
653 |a Structural integrity 
653 |a Rapid prototyping 
653 |a Numerical models 
653 |a Wrist 
653 |a Effectiveness 
653 |a Mechanical analysis 
653 |a Biocompatibility 
653 |a Structural reliability 
653 |a Thickness 
653 |a Product development 
653 |a Process parameters 
700 1 |a Avraam Stelios  |u Department of Mechanical Engineering, Frederick University, Nicosia 1036, Cyprus; l.papadakis@frederick.ac.cy (L.P.); s.avraam@simlead.eu (S.A.) 
700 1 |a Mohd Izhar Muhammad Zulhilmi  |u Smart Manufacturing Research Instutite, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia; 2023228008@student.uitm.edu.my (M.Z.M.I.); keval.priapratama@gmail.com (K.P.P.); yupiter.manurung@uitm.edu.my (Y.H.P.M.) 
700 1 |a Prajadhiana Keval Priapratama  |u Smart Manufacturing Research Instutite, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia; 2023228008@student.uitm.edu.my (M.Z.M.I.); keval.priapratama@gmail.com (K.P.P.); yupiter.manurung@uitm.edu.my (Y.H.P.M.) 
700 1 |a Manurung Yupiter H. P.  |u Smart Manufacturing Research Instutite, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia; 2023228008@student.uitm.edu.my (M.Z.M.I.); keval.priapratama@gmail.com (K.P.P.); yupiter.manurung@uitm.edu.my (Y.H.P.M.) 
700 1 |a Photiou Demetris  |u Simlead, Nicosia 2043, Cyprus 
773 0 |t Journal of Manufacturing and Materials Processing  |g vol. 9, no. 12 (2025), p. 408-428 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286310468/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286310468/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286310468/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch