A Versatile SPH Approach for Modelling Very Flexible and Modularized Floating Structures in Moored Configurations

Shranjeno v:
Bibliografske podrobnosti
izdano v:Journal of Marine Science and Engineering vol. 13, no. 12 (2025), p. 2283-2306
Glavni avtor: Ioannou Rafail
Drugi avtorji: Stratigaki Vasiliki, Loukogeorgaki Eva, Troch, Peter
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3286311595
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13122283  |2 doi 
035 |a 3286311595 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Ioannou Rafail  |u Department of Civil Engineering, Ghent University, Technologiepark 60, 9052 Ghent, Belgium; vicky.stratigaki@ugent.be (V.S.); peter.troch@ugent.be (P.T.) 
245 1 |a A Versatile SPH Approach for Modelling Very Flexible and Modularized Floating Structures in Moored Configurations 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A variety of Offshore Floating Photovoltaics (OFPVs) applications rely on the capacity of their floating support structures displacing in the shape of surface waves to reduce extreme wave-induced loads exerted on their floating-mooring system. This wave-adaptive displacement behaviour is typically realized through two principal design approaches, either by employing slender and continuously deformable structures composed of highly elastic materials or by decomposing the structure into multiple floating rigid pontoons interconnected via flexible connectors. The hydrodynamic behaviour of these structures is commonly analyzed in the literature using potential flow theory, to characterize wave loading, whereas in order to deploy such OFPV prototypes in realistic marine environments, a high-fidelity numerical fluid–structure interaction model is required. Thus, a versatile three-dimensional numerical scheme is herein presented that is capable of handling non-linear fluid-flexible structure interactions for Very Flexible Floating Structures (VFFSs): Multibody Dynamics (MBD) for modularized floating structures and floating-mooring line interactions. In the present study, this is achieved by employing the Smoothed Particles Hydrodynamics (SPH) fluid model of DualSPHysics, coupled both with the MBD module of Project Chrono and the MoorDyn+ lumped-mass mooring model. The SPH-MBD coupling enables modelling of large and geometrically non-linear displacements of VFFS within an Applied Element Method (AEM) plate formulation, as well as rigid body dynamics of modularized configurations. Meanwhile, the SPH-MoorDyn+ captures the fully coupled three-dimensional response of floating-mooring and floating-floating dynamics, as it is employed to model both moorings and flexible interconnectors between bodies. The coupled SPH-based numerical scheme is herein validated against physical experiments, capturing the hydroelastic response of VFFS, rigid body hydrodynamics, mooring line dynamics, and flexible connector behaviour under wave loading. The demonstrated numerical methodology represents the first validated Computational Fluid Dynamics (CFD) application of moored VFFS in three-dimensional domains, while its robustness is further confirmed using modular floating systems, enabling OFPV engineers to comparatively assess these two types of wave-adaptive designs in a unified numerical framework. 
653 |a Modular engineering 
653 |a Offshore 
653 |a Marine environment 
653 |a Formability 
653 |a Hydrodynamics 
653 |a Fluid dynamics 
653 |a Elastic deformation 
653 |a Modelling 
653 |a Rigid-body dynamics 
653 |a Mooring systems 
653 |a Extreme waves 
653 |a Connectors 
653 |a Floating structures 
653 |a Interaction models 
653 |a Mooring 
653 |a Photovoltaic cells 
653 |a Configurations 
653 |a Potential flow 
653 |a Flow theory 
653 |a Pontoons 
653 |a Photovoltaics 
653 |a Modular systems 
653 |a Fluid-structure interaction 
653 |a Surface waves 
653 |a Mooring lines 
653 |a Flexible structures 
653 |a Computational fluid dynamics 
653 |a Environmental 
700 1 |a Stratigaki Vasiliki  |u Department of Civil Engineering, Ghent University, Technologiepark 60, 9052 Ghent, Belgium; vicky.stratigaki@ugent.be (V.S.); peter.troch@ugent.be (P.T.) 
700 1 |a Loukogeorgaki Eva  |u Department of Civil Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; eloukog@civil.auth.gr 
700 1 |a Troch, Peter  |u Department of Civil Engineering, Ghent University, Technologiepark 60, 9052 Ghent, Belgium; vicky.stratigaki@ugent.be (V.S.); peter.troch@ugent.be (P.T.) 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 12 (2025), p. 2283-2306 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286311595/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286311595/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286311595/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch