The Product Variety Costing Method (PVCM): A Data-Driven Approach to Resource Allocation and Cost Evaluation

Guardado en:
Detalles Bibliográficos
Publicado en:Machines vol. 13, no. 12 (2025), p. 1137-1160
Autor principal: Nørgaard Morten
Otros Autores: Grønvald Jakob Meinertz, Christensen Carsten Keinicke Fjord, Mortensen, Niels Henrik
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286315427
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13121137  |2 doi 
035 |a 3286315427 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Nørgaard Morten 
245 1 |a The Product Variety Costing Method (PVCM): A Data-Driven Approach to Resource Allocation and Cost Evaluation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study introduces the Product Variety Costing Method (PVCM), a data-driven framework that addresses the limitations of existing costing approaches, which fail to accurately present the cost of product and part variety, thereby constraining cost-informed decision-making in modular product development. Traditional cost allocation methods often lack one or more of the following: a full life-cycle perspective, a lower level of granularity according to the product structure, or a combined integration of qualitative and quantitative data. The PVCM bridges these gaps by combining Time-Driven Activity-Based Costing (TDABC) with hierarchical product structures and empirical enterprise data, enabling the quantification of variety-induced resource consumption across components, subsystems, and complete products. An industrial application demonstrates that the PVCM enhances cost accuracy and transparency by linking resource use directly to specific product abstraction levels, thereby highlighting the true cost impact of product variety. In this case, results revealed deviations of up to 60% in the adjusted contribution margin ratio relative to traditional overhead-based methods, clearly indicating the influence of product variety on cost assessments. The method supports design and managerial decision-making by allowing evaluation of modularization based on detailed cost insights. While the study’s scope is limited to selected life-cycle phases and a single company case, the findings highlight the method’s future potential as a generalizable tool for evaluating economic benefits of modularization. Ultimately, the PVCM contributes to a more transparent and analytically grounded understanding of the cost of variety in complex product portfolios. 
653 |a Qualitative analysis 
653 |a Modularization 
653 |a Product development 
653 |a Cost allocation methods 
653 |a Decision making 
653 |a Product life cycle 
653 |a Resource allocation 
653 |a Design 
653 |a Industrial applications 
653 |a Manufacturers 
653 |a Subsystems 
653 |a Manufacturing 
653 |a Activity based costing 
653 |a Customization 
653 |a Cost control 
653 |a Engineers 
700 1 |a Grønvald Jakob Meinertz 
700 1 |a Christensen Carsten Keinicke Fjord 
700 1 |a Mortensen, Niels Henrik 
773 0 |t Machines  |g vol. 13, no. 12 (2025), p. 1137-1160 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286315427/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286315427/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286315427/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch