Towards Explainable Machine Learning from Remote Sensing to Medical Images—Merging Medical and Environmental Data into Public Health Knowledge Maps

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Machine Learning and Knowledge Extraction vol. 7, no. 4 (2025), p. 140-183
Κύριος συγγραφέας: Bilteanu Liviu
Άλλοι συγγραφείς: Dumitru, Corneliu Octavian, Dumachi Andreea, Alexandrescu Florin, Popa Radu, Buiu Octavian, Serban, Andreea Iren
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3286316335
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7040140  |2 doi 
035 |a 3286316335 
045 2 |b d20251001  |b d20251231 
100 1 |a Bilteanu Liviu  |u Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; andreea-iren.serban@fmvb.usamv.ro 
245 1 |a Towards Explainable Machine Learning from Remote Sensing to Medical Images—Merging Medical and Environmental Data into Public Health Knowledge Maps 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Both remote sensing and medical fields benefited a lot from the machine learning methods, originally developed for computer vision and multimedia. We investigate the applicability of the same data mining-based machine learning (ML) techniques for exploring the structure of both Earth observation (EO) and medical image data. Support Vector Machine (SVM) is an explainable active learning tool to discover the semantic relations between the EO image content classes, extending this technique further to medical images of various types. The EO image dataset was acquired by multispectral and radar sensors (WorldView-2, Sentinel-2, TerraSAR-X, Sentinel-1, RADARSAT-2, and Gaofen-3) from four different urban areas. In addition, medical images were acquired by camera, microscope, and computed tomography (CT). The methodology has been tested by several experts, and the semantic classification results were checked by either comparing them with reference data or through the feedback given by these experts in the field. The accuracy of the results amounts to 95% for the satellite images and 85% for the medical images. This study opens the pathway to correlate the information extracted from the EO images (e.g., quality-of-life-related environmental data) with that extracted from medical images (e.g., medical imaging disease phenotypes) to obtain geographically refined results in epidemiology. 
653 |a Cancer 
653 |a Metadata 
653 |a Datasets 
653 |a Radarsat 
653 |a Data mining 
653 |a Satellite imagery 
653 |a Medical imaging 
653 |a Labeling 
653 |a Remote sensing 
653 |a Computer vision 
653 |a Radar imaging 
653 |a Machine learning 
653 |a Feedback 
653 |a Big Data 
653 |a Semantics 
653 |a Support vector machines 
653 |a Computed tomography 
653 |a Graph representations 
653 |a Sensors 
653 |a Classification 
653 |a Public health 
653 |a Archives & records 
653 |a Image acquisition 
653 |a Image quality 
653 |a Satellites 
700 1 |a Dumitru, Corneliu Octavian  |u Remote Sensing Technology Institute, German Aerospace Center, Münchener Str. 20, 82234 Wessling, Germany 
700 1 |a Dumachi Andreea  |u National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania; andreea.dumachi@imt.ro (A.D.); mihai.florin.alexandrescu@gmail.com (F.A.); radu.popa@imt.ro (R.P.); octavian.buiu@imt.ro (O.B.) 
700 1 |a Alexandrescu Florin  |u National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania; andreea.dumachi@imt.ro (A.D.); mihai.florin.alexandrescu@gmail.com (F.A.); radu.popa@imt.ro (R.P.); octavian.buiu@imt.ro (O.B.) 
700 1 |a Popa Radu  |u National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania; andreea.dumachi@imt.ro (A.D.); mihai.florin.alexandrescu@gmail.com (F.A.); radu.popa@imt.ro (R.P.); octavian.buiu@imt.ro (O.B.) 
700 1 |a Buiu Octavian  |u National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania; andreea.dumachi@imt.ro (A.D.); mihai.florin.alexandrescu@gmail.com (F.A.); radu.popa@imt.ro (R.P.); octavian.buiu@imt.ro (O.B.) 
700 1 |a Serban, Andreea Iren  |u Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; andreea-iren.serban@fmvb.usamv.ro 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 4 (2025), p. 140-183 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286316335/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286316335/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286316335/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch