Exploring New Horizons: fNIRS and Machine Learning in Understanding PostCOVID-19

Guardado en:
Detalles Bibliográficos
Publicado en:Machine Learning and Knowledge Extraction vol. 7, no. 4 (2025), p. 129-150
Autor principal: Morales-Cervantes, Antony
Otros Autores: Herrera, Victor, Zamora-Mendoza, Blanca Nohemí, Flores-Ramírez, Rogelio, López-Cano, Aaron A, Guevara, Edgar
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286316347
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7040129  |2 doi 
035 |a 3286316347 
045 2 |b d20251001  |b d20251231 
100 1 |a Morales-Cervantes, Antony  |u Department of Postgraduate Studies and Research, TecNM—Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Morelia 58120, Michoacán, Mexico; antony.mc@morelia.tecnm.mx 
245 1 |a Exploring New Horizons: fNIRS and Machine Learning in Understanding PostCOVID-19 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a PostCOVID-19 is a condition affecting approximately 10% of individuals infected with SARS-CoV-2, presenting significant challenges in diagnosis and clinical management. Portable neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), offer real-time insights into cerebral hemodynamics and represent a promising tool for studying postCOVID-19 in naturalistic settings. This study investigates the integration of fNIRS with machine learning to identify neural correlates of postCOVID-19. A total of six machine learning classifiers—Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNNs), XGBoost, Logistic Regression, and Multi-Layer Perceptron (MLP)—were evaluated using a stratified subject-aware cross-validation scheme on a dataset comprising 29,737 time-series samples from 37 participants (9 postCOVID-19, 28 controls). Four different feature representation strategies were compared: raw time-series, PCA-based dimensionality reduction, statistical feature extraction, and a hybrid approach that combines time-series and statistical descriptors. Among these, the hybrid representation demonstrated the highest discriminative performance. The SVM classifier trained on hybrid features achieved strong discrimination (<inline-formula>ROC-AUC</inline-formula> = 0.909) under subject-aware CV5; at the default threshold, <inline-formula>Sensitivity</inline-formula> was moderate and <inline-formula>Specificity</inline-formula> was high, outperforming all other methods. In contrast, models trained on statistical features alone exhibited limited <inline-formula>Sensitivity</inline-formula> despite high <inline-formula>Specificity</inline-formula>. These findings highlight the importance of temporal information in the fNIRS signal and support the potential of machine learning combined with portable neuroimaging for postCOVID-19 identification. This approach may contribute to the development of non-invasive diagnostic tools to support individualized treatment and longitudinal monitoring of patients with persistent neurological symptoms. 
653 |a Infections 
653 |a Feature extraction 
653 |a Neuroimaging 
653 |a Alzheimer's disease 
653 |a Long COVID 
653 |a Datasets 
653 |a Hemodynamics 
653 |a Multilayers 
653 |a Severe acute respiratory syndrome coronavirus 2 
653 |a Asymptomatic 
653 |a Brain research 
653 |a Multilayer perceptrons 
653 |a Medical imaging 
653 |a Cognitive ability 
653 |a Machine learning 
653 |a Statistical analysis 
653 |a Blood 
653 |a Infrared spectra 
653 |a Representations 
653 |a Hemoglobin 
653 |a Spectrum analysis 
653 |a Sensitivity 
653 |a Support vector machines 
653 |a Near infrared radiation 
653 |a Spectroscopy 
653 |a Biomarkers 
653 |a Portability 
653 |a Real time 
653 |a Executive function 
653 |a Time series 
700 1 |a Herrera, Victor  |u Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; super_herrera@hotmail.com (V.H.); lopezcanoazael@gmail.com (A.A.L.-C.) 
700 1 |a Zamora-Mendoza, Blanca Nohemí  |u Laboratorio de Salud Total, Centro de Investigación Aplicada en Ambiente y Salud—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; blancazamoramendoza@hotmail.com (B.N.Z.-M.); rogelio.flores@uaslp.mx (R.F.-R.) 
700 1 |a Flores-Ramírez, Rogelio  |u Laboratorio de Salud Total, Centro de Investigación Aplicada en Ambiente y Salud—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; blancazamoramendoza@hotmail.com (B.N.Z.-M.); rogelio.flores@uaslp.mx (R.F.-R.) 
700 1 |a López-Cano, Aaron A  |u Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; super_herrera@hotmail.com (V.H.); lopezcanoazael@gmail.com (A.A.L.-C.) 
700 1 |a Guevara, Edgar  |u Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología—CIACYT, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78120, San Luis Potosí, Mexico; super_herrera@hotmail.com (V.H.); lopezcanoazael@gmail.com (A.A.L.-C.) 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 4 (2025), p. 129-150 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286316347/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286316347/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286316347/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch