AI-Enabled IoT Intrusion Detection: Unified Conceptual Framework and Research Roadmap

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine Learning and Knowledge Extraction vol. 7, no. 4 (2025), p. 115-153
1. Verfasser: Villafranca, Antonio
Weitere Verfasser: Thant Kyaw Min, Tasic Igor, Maria-Dolores, Cano
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3286316442
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7040115  |2 doi 
035 |a 3286316442 
045 2 |b d20251001  |b d20251231 
100 1 |a Villafranca, Antonio  |u Department of Information and Communication Technologies, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain 
245 1 |a AI-Enabled IoT Intrusion Detection: Unified Conceptual Framework and Research Roadmap 
260 |b MDPI AG  |c 2025 
513 |a Literature Review 
520 3 |a The Internet of Things (IoT) revolutionizes connectivity, enabling innovative applications across healthcare, industry, and smart cities but also introducing significant cybersecurity challenges due to its expanded attack surface. Intrusion Detection Systems (IDSs) play a pivotal role in addressing these challenges, offering tailored solutions to detect and mitigate threats in dynamic and resource-constrained IoT environments. Through a rigorous analysis, this study classifies IDS research based on methodologies, performance metrics, and application domains, providing a comprehensive synthesis of the field. Key findings reveal a paradigm shift towards integrating artificial intelligence (AI) and hybrid approaches, surpassing the limitations of traditional, static methods. These advancements highlight the potential for IDSs to enhance scalability, adaptability, and detection accuracy. However, unresolved challenges, such as resource efficiency and real-world applicability, underline the need for further research. By contextualizing these findings within the broader landscape of IoT security, this work emphasizes the critical importance of developing IDS solutions that ensure the reliability, privacy, and security of interconnected systems, contributing to the sustainable evolution of IoT ecosystems. 
653 |a Innovations 
653 |a Accuracy 
653 |a Performance measurement 
653 |a Datasets 
653 |a Internet of Things 
653 |a Trends 
653 |a Neural networks 
653 |a Proposals 
653 |a Cybersecurity 
653 |a Design 
653 |a Blockchain 
653 |a Literature reviews 
653 |a Algorithms 
653 |a Privacy 
653 |a Artificial intelligence 
653 |a Efficiency 
653 |a Intrusion detection systems 
653 |a Comparative analysis 
700 1 |a Thant Kyaw Min  |u Department of Information and Communication Technologies, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain 
700 1 |a Tasic Igor  |u Faculty of Economics and Business, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain 
700 1 |a Maria-Dolores, Cano  |u Department of Information and Communication Technologies, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 4 (2025), p. 115-153 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286316442/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286316442/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286316442/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch