Hot Deformation Behavior via Isothermal Compression and Constitutive Model of GH2132 Superalloy

Guardado en:
Detalles Bibliográficos
Publicado en:Materials vol. 18, no. 24 (2025), p. 5650-5667
Autor principal: Sun, Yue
Otros Autores: Cheng, Peng, Wang, Decheng, Shao Chenxi, Cheng, Lu
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286317549
003 UK-CbPIL
022 |a 1996-1944 
024 7 |a 10.3390/ma18245650  |2 doi 
035 |a 3286317549 
045 2 |b d20250101  |b d20251231 
084 |a 231532  |2 nlm 
100 1 |a Sun, Yue  |u China Productivity Center for Machinery, China Academy of Machinery Science and Technology, Beijing 100044, China; sunyue97@hnu.edu.cn (Y.S.); 
245 1 |a Hot Deformation Behavior via Isothermal Compression and Constitutive Model of GH2132 Superalloy 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a GH2132, an Ni–Cr–Fe-based superalloy for aero-engine components, exhibits hot workability that is highly sensitive to processing parameters. The hot deformation behavior of GH2132 alloy was investigated via isothermal compression (Gleeble-3500-GTC) over 850–1100 °C and 0.001–10 s−1, combined with optical microscopy and EBSD characterization. A strain-compensated Arrhenius-type hyperbolic-sine model was established, achieving high predictive accuracy (R2 = 0.9916; AARE = 3.86%) with an average activation energy Q = 446.2 kJ·mol−1. Flow stress decreases with increasing temperature and increases with strain rate, while microstructural softening transitions from dynamic recovery to complete dynamic recrystallization at higher temperatures and lower strain rates. Three-dimensional power-dissipation and hot-processing maps (Dynamic Materials Model) delineate safe domains and instability regions, identifying an optimal window of 1000–1100 °C at 0.001–0.01 s−1 and instability at 850–900 °C with 0.01–0.1 s−1. These results provide guidance for selecting parameters for hot deformation behavior during thermomechanical processing of GH2132. 
651 4 |a United States--US 
653 |a Strain rate 
653 |a Cooling 
653 |a Investigations 
653 |a Oxidation 
653 |a Parameter sensitivity 
653 |a Temperature 
653 |a Thermomechanical treatment 
653 |a Energy dissipation 
653 |a Constitutive models 
653 |a Deformation 
653 |a Dynamic recrystallization 
653 |a Working conditions 
653 |a Microscopy 
653 |a Homogenization 
653 |a Process mapping 
653 |a Hot workability 
653 |a Ferrous alloys 
653 |a Stress concentration 
653 |a Superalloys 
653 |a Engine components 
653 |a Optical microscopy 
653 |a Process parameters 
653 |a Yield strength 
700 1 |a Cheng, Peng  |u China Productivity Center for Machinery, China Academy of Machinery Science and Technology, Beijing 100044, China; sunyue97@hnu.edu.cn (Y.S.); 
700 1 |a Wang, Decheng  |u China Productivity Center for Machinery, China Academy of Machinery Science and Technology, Beijing 100044, China; sunyue97@hnu.edu.cn (Y.S.); 
700 1 |a Shao Chenxi  |u China Productivity Center for Machinery, China Academy of Machinery Science and Technology, Beijing 100044, China; sunyue97@hnu.edu.cn (Y.S.); 
700 1 |a Cheng, Lu  |u China Productivity Center for Machinery, China Academy of Machinery Science and Technology, Beijing 100044, China; sunyue97@hnu.edu.cn (Y.S.); 
773 0 |t Materials  |g vol. 18, no. 24 (2025), p. 5650-5667 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286317549/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286317549/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286317549/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch