Probing Membrane Structure of Lipid Nanomedicines Using Solution Small-Angle X-Ray Scattering: Applications and Prospects

Guardado en:
Detalles Bibliográficos
Publicado en:Membranes vol. 15, no. 12 (2025), p. 382-404
Autor principal: Ke-Meng, Li
Otros Autores: Song Panqi, Xiao-Peng, He, Li, Na
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Lipid-based nanomedicines are already widely used in antitumor therapy and gene delivery. However, their complex structural features demand advanced mesoscopic structural characterization tools for effective research and development (R&D) and quality control. Synchrotron small-angle X-ray scattering (SAXS) is a powerful, non-invasive technique for probing nanoscale membrane organizations, monitoring in situ dynamic membrane assembly, and exploring the interactions of components in lipid-based drug delivery systems, including liposomes, lipoplexes, lipid nanoparticles (LNPs), and lyotropic liquid crystals (LLCs). Recent advances in high-flux synchrotron facilities, high-frequency detectors, and automated SAXS data processing pipelines permit a detailed structural characterization of lamellarity, bilayer spacing, internal phases, core–shell morphology, as well as “pump-probe” dynamic process studies for lipid nanomedicines. Though major challenges remain in sample polydispersity and model fitting, the advances in time-resolved synchrotron SAXS, high-throughput automation, and artificial intelligence (AI)-assisted modeling are rapidly reducing this barrier. This review summarizes SAXS methodology and introduces representative case studies in the field of lipid nanomedicines. The performance of BioSAXS beamline BL19U2 in the Shanghai synchrotron radiation facility (SSRF) and prospects of AI-guided drug screening at BL19U2 are highlighted to advance intelligent R&D and quality control for lipid nanomedicines.
ISSN:2077-0375
DOI:10.3390/membranes15120382
Fuente:Health & Medical Collection