Artificial Intelligence for Iteration Count Prediction in Real-Time CORDIC Processing

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Mathematics vol. 13, no. 24 (2025), p. 3957-3975
المؤلف الرئيسي: Ratheesh, Sudheerbabu
مؤلفون آخرون: Chandrika, Reghunath Lekshmi, Franzoni Valentina, Milani, Alfredo, Randieri Cristian
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3286317607
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13243957  |2 doi 
035 |a 3286317607 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Ratheesh, Sudheerbabu  |u Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; s_ratheesh@cb.amrita.edu (R.S.); cr_lekshmi@cb.amrita.edu (L.C.R.) 
245 1 |a Artificial Intelligence for Iteration Count Prediction in Real-Time CORDIC Processing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The first research attempt to dynamically optimize the CORDIC algorithm’s iteration count using artificial intelligence is presented in this paper. Conventional approaches depend on a certain number of iterations, which frequently results in extra calculations and longer processing times. Our method drastically reduces the number of iterations without compromising accuracy by using machine learning regression models to predict the near-best iteration value for a given input angle. Overall efficiency is increased as a result of reduced computational complexity along with faster execution. We optimized the hyperparameters of several models, including Random Forest, XGBoost, and Support Vector Machine (SVM) Regressor, using Grid Search and Cross-Validation. Experimental results show that the SVM Regressor performs best, with a mean absolute error of 0.045 and an R2 score of 0.998. This AI-driven dynamic iteration prediction thus offers a promising route for efficient and adaptable CORDIC implementations in real-time digital signal processing applications. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Embedded systems 
653 |a Coordinate transformations 
653 |a Artificial intelligence 
653 |a Digital signal processing 
653 |a Support vector machines 
653 |a Regression models 
653 |a Neural networks 
653 |a Signal processing 
653 |a Mathematical functions 
653 |a Medical equipment 
653 |a Design 
653 |a Energy efficiency 
653 |a Algorithms 
653 |a Computer graphics 
653 |a Digital signal processors 
653 |a Real time 
653 |a Robotics 
700 1 |a Chandrika, Reghunath Lekshmi  |u Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; s_ratheesh@cb.amrita.edu (R.S.); cr_lekshmi@cb.amrita.edu (L.C.R.) 
700 1 |a Franzoni Valentina  |u Department of Mathematics and Computer Science, University of Perugia, 06123 Perugia, Italy; valentina.franzoni@unipg.it 
700 1 |a Milani, Alfredo  |u Department of Human Sciences, Link Campus University, 00165 Roma, Italy 
700 1 |a Randieri Cristian  |u Department of Theoretical and Applied Sciences, eCampus University, Via Isimbardi 10, 22060 Novedrate, Italy; cristian.randieri@uniecampus.it 
773 0 |t Mathematics  |g vol. 13, no. 24 (2025), p. 3957-3975 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286317607/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286317607/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286317607/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch