A GWO-LSTM based approach for photovoltaic power generation prediction under extreme climate conditions

Guardado en:
Bibliografiske detaljer
Udgivet i:Journal of Physics: Conference Series vol. 3163, no. 1 (Dec 2025), p. 012009
Hovedforfatter: Daoyuan, Wang
Andre forfattere: Haomin, Zhang, Xi, Lin, Yu, Yu, Jie, Zheng, Jizhong, Zhu
Udgivet:
IOP Publishing
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3286320099
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3163/1/012009  |2 doi 
035 |a 3286320099 
045 2 |b d20251201  |b d20251231 
100 1 |a Daoyuan, Wang 
245 1 |a A GWO-LSTM based approach for photovoltaic power generation prediction under extreme climate conditions 
260 |b IOP Publishing  |c Dec 2025 
513 |a Journal Article 
520 3 |a As the participation rate of photovoltaic power generation in the entire power system continues to increase, accurate photovoltaic power prediction technology is crucial for optimizing power system scheduling. However, in recent years, the frequent occurrence of extreme weather events has significantly increased the difficulty of accurately predicting photovoltaic power generation. Regarding photovoltaic power prediction methods under extreme weather conditions, this study first reviews existing research on photovoltaic power prediction methods from three aspects: dust storms, heavy rain, and snowfall. Based on this review, a GWO-LSTM grey wolf optimization time series prediction model based on K-Means clustering is proposed. First, the K-Means clustering algorithm is used to classify weather types. Then, based on the weather classification results, the predictive performance of the GWO-LSTM grey wolf optimization time series model, random forest prediction model, BP neural network model, and LSTM model is compared. The prediction results show that the GWO-LSTM model achieves the highest prediction accuracy, with an accuracy of approximately 95% under four weather conditions. This provides effective data support for the safe and stable operation of new power systems with a high proportion of photovoltaic grid connection. 
653 |a Electric power generation 
653 |a Dust storms 
653 |a Weather 
653 |a Cluster analysis 
653 |a Time series 
653 |a Prediction models 
653 |a Clustering 
653 |a Vector quantization 
653 |a Back propagation networks 
653 |a Optimization 
700 1 |a Haomin, Zhang 
700 1 |a Xi, Lin 
700 1 |a Yu, Yu 
700 1 |a Jie, Zheng 
700 1 |a Jizhong, Zhu 
773 0 |t Journal of Physics: Conference Series  |g vol. 3163, no. 1 (Dec 2025), p. 012009 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286320099/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286320099/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch