Dynamic Multi-Objective Controller Placement in SD-WAN: A GMM-MARL Hybrid Framework

Guardado en:
Detalles Bibliográficos
Publicado en:Network vol. 5, no. 4 (2025), p. 52-83
Autor principal: Abdulghani, Abdulrahman M
Otros Autores: Azizol, Abdullah, Rahiman, A R, Abdul Hamid Nor Asilah Wati, Akram Bilal Omar
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286331729
003 UK-CbPIL
022 |a 2673-8732 
024 7 |a 10.3390/network5040052  |2 doi 
035 |a 3286331729 
045 2 |b d20251001  |b d20251231 
100 1 |a Abdulghani, Abdulrahman M  |u Department of Communication Technology and Network, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia 
245 1 |a Dynamic Multi-Objective Controller Placement in SD-WAN: A GMM-MARL Hybrid Framework 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Modern Software-Defined Wide Area Networks (SD-WANs) require adaptive controller placement addressing multi-objective optimization where latency minimization, load balancing, and fault tolerance must be simultaneously optimized. Traditional static approaches fail under dynamic network conditions with evolving traffic patterns and topology changes. This paper presents a novel hybrid framework integrating Gaussian Mixture Model (GMM) clustering with Multi-Agent Reinforcement Learning (MARL) for dynamic controller placement. The approach leverages probabilistic clustering for intelligent MARL initialization, reducing exploration requirements. Centralized Training with Decentralized Execution (CTDE) enables distributed optimization through cooperative agents. Experimental evaluation using real-world topologies demonstrates a noticeable reduction in the latency, improvement in network balance, and significant computational efficiency versus existing methods. Dynamic adaptation experiments confirm superior scalability during network changes. The hybrid architecture achieves linear scalability through problem decomposition while maintaining real-time responsiveness, establishing practical viability. 
653 |a Mathematical programming 
653 |a Machine learning 
653 |a Software 
653 |a Integer programming 
653 |a Wide area networks 
653 |a Network topologies 
653 |a Artificial intelligence 
653 |a Optimization techniques 
653 |a Real time 
653 |a Adaptation 
653 |a Linear programming 
653 |a Algorithms 
653 |a Clustering 
653 |a Fault tolerance 
653 |a Efficiency 
653 |a Business metrics 
700 1 |a Azizol, Abdullah  |u Department of Communication Technology and Network, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia 
700 1 |a Rahiman, A R  |u Department of Communication Technology and Network, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia 
700 1 |a Abdul Hamid Nor Asilah Wati  |u Department of Communication Technology and Network, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia 
700 1 |a Akram Bilal Omar  |u Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia 
773 0 |t Network  |g vol. 5, no. 4 (2025), p. 52-83 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286331729/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286331729/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286331729/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch