Multi-Objective Optimization of Supercritical Water Oxidation for Radioactive Organic Anion Exchange Resin Wastewater Using GPR–NSGA-II

Guardado en:
Detalles Bibliográficos
Publicado en:Processes vol. 13, no. 12 (2025), p. 3759-3780
Autor principal: Jin Yabin
Otros Autores: Xu, Tiantian, Zhang, Le, Zhang, Qian, Zhou, Liang, Shen, Zhe, Wan Zhenjie
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286345737
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13123759  |2 doi 
035 |a 3286345737 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Jin Yabin  |u The Institute of Energy and Architecture, Xihang University, Xi’an 710077, China 
245 1 |a Multi-Objective Optimization of Supercritical Water Oxidation for Radioactive Organic Anion Exchange Resin Wastewater Using GPR–NSGA-II 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Radioactive organic anion exchange resins present a significant challenge in nuclear power plant waste disposal due to their volatility, instability, and biotoxicity. Based on experimental degradation data from the supercritical water oxidation (SCWO) of organic anion exchange resin waste liquids from the nuclear industry, this study conducted correlation analysis, cluster analysis, and Sobol sensitivity analysis of key process parameters. The results indicate that temperature is the primary factor influencing chemical oxygen demand (COD) and total nitrogen (TN) removal, while oxidant dosage exhibits a notable synergistic effect on nitrogen transformation. A Gaussian Process Regression–Non-Dominated Sorting Genetic Algorithm II (GPR–NSGA-II) multi-objective optimization model was developed to balance COD/TN removal rate and treatment cost. The optimal operating conditions were identified as a temperature of 472.2 °C, an oxidant stoichiometric ratio (OR) of 136%, an initial COD concentration of 73,124 mg·L−1, and a residence time of 3.8 min. Under these conditions, COD and TN removal efficiencies reached 99.63% and 32.92%, respectively, with a treatment cost of 128.16 USD·t−1. The proposed GPR–NSGA-II optimization strategy provides a methodological foundation for process design and economic assessment of SCWO in treating radioactive organic resin waste liquids and can be extended to other studies involving high-concentration, refractory organic wastewater treatment. 
653 |a Supercritical water oxidation 
653 |a Organic wastes 
653 |a Sensitivity analysis 
653 |a Chemical oxygen demand 
653 |a Nitrogen 
653 |a Radioactive wastes 
653 |a Optimization 
653 |a Anion exchanging 
653 |a Genetic transformation 
653 |a Waste disposal 
653 |a Multiple objective analysis 
653 |a Liquids 
653 |a Oxidants 
653 |a Energy consumption 
653 |a Industrial plant emissions 
653 |a Efficiency 
653 |a Corrosion 
653 |a Wastewater treatment 
653 |a Nuclear reactors 
653 |a Nuclear power plants 
653 |a Oxidizing agents 
653 |a Experiments 
653 |a Algorithms 
653 |a Correlation analysis 
653 |a Resins 
653 |a Process parameters 
653 |a Emissions 
653 |a Parameter sensitivity 
653 |a Effluents 
653 |a Sorting algorithms 
653 |a Optimization models 
653 |a Machine learning 
653 |a Nuclear energy 
653 |a Cluster analysis 
653 |a Genetic algorithms 
653 |a Oxidation 
653 |a Temperature 
653 |a Synergistic effect 
653 |a Gaussian process 
653 |a Fluidized bed reactors 
700 1 |a Xu, Tiantian  |u The Institute of Energy and Architecture, Xihang University, Xi’an 710077, China 
700 1 |a Zhang, Le  |u The Institute of Energy and Architecture, Xihang University, Xi’an 710077, China 
700 1 |a Zhang, Qian  |u The Institute of Energy and Architecture, Xihang University, Xi’an 710077, China 
700 1 |a Zhou, Liang  |u The Institute of Energy and Architecture, Xihang University, Xi’an 710077, China 
700 1 |a Shen, Zhe  |u The Institute of Energy and Architecture, Xihang University, Xi’an 710077, China 
700 1 |a Wan Zhenjie  |u The College of Building Environmental Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China 
773 0 |t Processes  |g vol. 13, no. 12 (2025), p. 3759-3780 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286345737/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286345737/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286345737/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch