A Distributed Data Management and Service Framework for Heterogeneous Remote Sensing Observations

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote Sensing vol. 17, no. 24 (2025), p. 4009-4032
1. Verfasser: Cheng Hongquan
Weitere Verfasser: Wu Huayi, Zheng, Jie, Li, Zhenqiang, Qi Kunlun, Gong Jianya, Longgang, Xiang, Cao Yipeng
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3286351819
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17244009  |2 doi 
035 |a 3286351819 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Cheng Hongquan  |u School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou 510090, China 
245 1 |a A Distributed Data Management and Service Framework for Heterogeneous Remote Sensing Observations 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>We present DDMS, a distributed data management and service framework that consolidates heterogeneous remote sensing data sources, including optical imagery and InSAR point clouds, into a unified system for scalable and efficient management. <list-item> The framework introduces an integrated storage model combining distributed file systems, NoSQL, and relational databases, alongside a parallel computing model, enabling optimized performance for large-scale image processing and real-time data access. </list-item> What are the implications of the main findings? <list list-type="bullet"> <list-item> </list-item>DDMS significantly enhances the scalability and efficiency of remote sensing data management, providing a flexible solution for real-time service delivery in applications that require high-volume, diverse datasets such as disaster monitoring, environmental analysis, and urban development. <list-item> By incorporating elastic parallelism and modular design, DDMS supports dynamic, large-scale geospatial data processing, reducing latency, improving service responsiveness, and ensuring robust performance across varying workloads and data sizes. </list-item> Remote sensing imagery is a fundamental data source in spatial information science and is widely used in earth observation and geospatial applications. The explosive growth of such data poses significant challenges for online management and service, particularly in terms of storage scalability, processing efficiency, and real-time accessibility. To overcome these limitations, we propose DDMS, a distributed data management and service framework for heterogeneous remote sensing data that structures its functionality around three core components: storage, computing, and service. In this framework, a distributed integrated storage model is constructed by integrating file systems with database technologies to support heterogeneous data management, and a parallel computing model is designed to optimize large-scale image processing. To verify the effectiveness of the proposed framework, a prototype system was implemented and evaluated with experiments on representative datasets, covering both optical and InSAR images. Results show that DDMS can flexibly adapt to heterogeneous remote sensing data and storage backends while maintaining efficient data management and stable service performance. Stress tests further confirm its scalability and consistent responsiveness under varying workloads. DDMS provides a practical and extensible solution for large-scale online management and real-time service of remote sensing images. By enhancing modularity, scalability, and service responsiveness, the framework supports both research and practical applications that depend on massive earth observation data. 
653 |a Databases 
653 |a Modularity 
653 |a Environmental monitoring 
653 |a Metadata 
653 |a Data processing 
653 |a Datasets 
653 |a Data sources 
653 |a Remote sensing 
653 |a Image processing 
653 |a Fault tolerance 
653 |a Urban development 
653 |a Efficiency 
653 |a Distributed processing 
653 |a Data management 
653 |a Big Data 
653 |a Spatial data 
653 |a Infrastructure 
653 |a Workload 
653 |a Design 
653 |a Modular design 
653 |a Latency 
653 |a Real time 
653 |a Management 
653 |a Relational data bases 
700 1 |a Wu Huayi  |u State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China 
700 1 |a Zheng, Jie  |u Oriental Space Port Research Institute, Yantai 265100, China 
700 1 |a Li, Zhenqiang  |u National Engineering Research Center for Geographic Information System, School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China 
700 1 |a Qi Kunlun  |u National Engineering Research Center for Geographic Information System, School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China 
700 1 |a Gong Jianya  |u State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China 
700 1 |a Longgang, Xiang  |u State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China 
700 1 |a Cao Yipeng  |u Oriental Space Port Research Institute, Yantai 265100, China 
773 0 |t Remote Sensing  |g vol. 17, no. 24 (2025), p. 4009-4032 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286351819/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286351819/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286351819/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch