AI-Driven Virtual Power Plant Scheduling: CUDA-Accelerated Parallel Simulated Annealing Approach

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Smart Cities vol. 8, no. 6 (2025), p. 192-223
मुख्य लेखक: Abbasi, Ali
अन्य लेखक: Sobral, João L, Rodrigues, Ricardo
प्रकाशित:
MDPI AG
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text + Graphics
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3286351822
003 UK-CbPIL
022 |a 2624-6511 
024 7 |a 10.3390/smartcities8060192  |2 doi 
035 |a 3286351822 
045 2 |b d20250101  |b d20251231 
100 1 |a Abbasi, Ali  |u DTx—Digital Transformation CoLAB, University of Minho, 4800-058 Guimarães, Portugal; ricardo.rodrigues@dtx-colab.pt 
245 1 |a AI-Driven Virtual Power Plant Scheduling: CUDA-Accelerated Parallel Simulated Annealing Approach 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> The proliferation of distributed energy resources in smart cities calls for scalable and timeefficient optimization of virtual power plants. This study introduces a GPU-accelerated Multiple-Chain Simulated Annealing (MC-SA) framework that employs dual-level parallelization to enable real-time VPP scheduling. By improving computational speed and responsiveness, the method advances resilient, adaptive, and sustainable urban energy management. What are the main findings? <list list-type="bullet"> <list-item> </list-item>Developed a fully GPU-accelerated Monte Carlo Simulated Annealing (MC-SA) framework that integrates multi-chain algorithmic parallelism with prosumer-level decomposition for scalable VPP scheduling. <list-item> Achieved over 10× speedup and near real-time runtimes on 1000-prosumer scenarios, while ensuring strict feasibility through a projection-based constraint-handling mechanism. </list-item> What are the implications of the main findings? <list list-type="bullet"> <list-item> </list-item>Enables real-time metaheuristic optimization for smart grid applications, supporting intraday market responsiveness and grid-aware dispatch decisions. <list-item> Provides a transferable, GPU-compatible parallelization strategy for distributed optimization and control across large-scale smart-city infrastructure. </list-item> Efficient scheduling of virtual power plants (VPPs) is essential for the integration of distributed energy resources into modern power systems. This study presents a CUDA-accelerated Multiple-Chain Simulated Annealing (MC-SA) algorithm tailored for optimizing VPP scheduling. Traditional Simulated Annealing algorithms are inherently sequential, limiting their scalability for large-scale applications. The proposed MC-SA algorithm mitigates this limitation by executing multiple independent annealing chains concurrently, enhancing the exploration of the solution space and reducing the requisite number of sequential cooling iterations. The algorithm employs a dual-level parallelism strategy: at the prosumer level, individual energy producers and consumers are assessed in parallel; at the algorithmic level, multiple Simulated Annealing chains operate simultaneously. This architecture not only expedites computation but also improves solution accuracy. Experimental evaluations demonstrate that the CUDA-based MC-SA achieves substantial speedups—up to 10× compared to a single-chain baseline implementation while maintaining or enhancing solution quality. Our analysis reveals an empirical power-law relationship between parallel chains and required sequential iterations (iterations ∝ chains−0.88±0.17), demonstrating that using 50 chains reduces the required number of sequential iterations by approximately 10× compared to single-chain SA while maintaining equivalent solution quality. The algorithm demonstrates scalable performance across VPP sizes from 250 to 1000 prosumers, with approximately 50 chains providing the optimal balance between solution quality and computational efficiency for practical applications. 
653 |a Energy management 
653 |a Parallel processing 
653 |a Distributed generation 
653 |a Energy sources 
653 |a Optimization techniques 
653 |a Cities 
653 |a Virtual power plants 
653 |a Energy 
653 |a Smart grid 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Statistical analysis 
653 |a Scheduling 
653 |a Electricity 
653 |a Graphics processing units 
653 |a Participation 
653 |a Decision making 
653 |a Optimization 
653 |a Solution space 
653 |a Algorithms 
653 |a Linear programming 
653 |a Real time 
653 |a Simulated annealing 
653 |a Run time (computers) 
700 1 |a Sobral, João L  |u Centro de Algoritmi, Universidade do Minho, Campus of Gualar, 4704-553 Braga, Portugal; jls@di.uminho.pt 
700 1 |a Rodrigues, Ricardo  |u DTx—Digital Transformation CoLAB, University of Minho, 4800-058 Guimarães, Portugal; ricardo.rodrigues@dtx-colab.pt 
773 0 |t Smart Cities  |g vol. 8, no. 6 (2025), p. 192-223 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286351822/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286351822/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286351822/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch