Matrix-R Theory: A Simple Generic Method to Improve RGB-Guided Spectral Recovery Algorithms †

Guardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 25, no. 24 (2025), p. 7662-7687
Autor principal: Finlayson, Graham D
Otros Autores: Yi-Tun, Lin, Kucuk Abdullah
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286351912
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25247662  |2 doi 
035 |a 3286351912 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Finlayson, Graham D 
245 1 |a Matrix-R Theory: A Simple Generic Method to Improve RGB-Guided Spectral Recovery Algorithms † 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a RGB-guided spectral recovery algorithms include both spectral reconstruction (SR) methods that map image RGBs to spectra and pan-sharpening (PS) methods, where an RGB image is used to guide the upsampling of a low-resolution spectral image. In this paper, we exploit Matrix-R theory in developing a post-processing algorithm that, when applied to the outputs of any and all spectral recovery algorithms, almost always improves their spectral recovery accuracy (and never makes it worse). In Matrix-R theory, any spectrum can be decomposed into a component—called the fundamental metamer—in the space spanned by the spectral sensitivities and a second component—the metameric black—that is orthogonal to this subspace. In our post-processing algorithm, we substitute the correct fundamental metamer, which we calculate directly from the RGB image, for the estimated (and generally incorrect) fundamental metamer that is returned by a spectral recovery algorithm. Significantly, we prove that substituting the correct fundamental metamer always reduces the recovery error. Further, if the spectra in a target application are known to be well described by a linear model of low dimension, then our Matrix-R post-processing algorithm can also exploit this additional physical constraint. In experiments, we demonstrate that our Matrix-R post-processing improves the performance of a variety of spectral reconstruction and pan-sharpening algorithms. 
653 |a Decomposition 
653 |a Cameras 
653 |a Methods 
653 |a Deep learning 
653 |a Algorithms 
700 1 |a Yi-Tun, Lin 
700 1 |a Kucuk Abdullah 
773 0 |t Sensors  |g vol. 25, no. 24 (2025), p. 7662-7687 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286351912/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286351912/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286351912/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch