A Hybrid Motion Compensation Scheme for THz-SAR with Composite Modulated Waveform

Salvato in:
Dettagli Bibliografici
Pubblicato in:Remote Sensing vol. 17, no. 24 (2025), p. 4036-4064
Autore principale: Wu Chongzheng
Altri autori: Shi Yanpeng, Zhang Xijian, Zhang, Yifei
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3286352144
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17244036  |2 doi 
035 |a 3286352144 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Wu Chongzheng  |u School of Integrated Circuits, Shandong University, Jinan 250100, China; chongzhengwu@mail.sdu.edu.cn (C.W.); ypshi@sdu.edu.cn (Y.S.); zhangxijian@sdu.edu.cn (X.Z.) 
245 1 |a A Hybrid Motion Compensation Scheme for THz-SAR with Composite Modulated Waveform 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>This work proposes a hybrid motion compensation scheme that simultaneously addresses non-stationary platform vibrations and trajectory deviations, overcoming the limitations of conventional methods that treated them individually. <list-item> The proposed method achieves high-precision azimuth resolution across a range of SNR conditions, demonstrating superior performance compared to reported techniques. </list-item> What is the implication of the main finding? <list list-type="bullet"> <list-item> </list-item>It provides a robust and practical solution for high-resolution THz-SAR imaging, paving the way for vibration suppression in scenarios where platform motion is complex and non-stationary. <list-item> The integrated approach of adaptive filtering, advanced signal decomposition, and hybrid optimization establishes a new benchmark for motion-error suppression in advanced radar systems. </list-item> Terahertz Synthetic Aperture Radar (THz-SAR) is highly sensitive to platform vibrations and trajectory deviations, which introduce severe phase errors and limited resolution. Typically, platform vibrations and trajectory deviations are investigated individually, and vibrations are modeled as a stationary sine term. In this work, a hybrid motion compensation (MOCO) scheme is proposed to address both platform vibrations and trajectory deviations simultaneously, achieving improved imaging quality. The scheme initiates with a parameter self-adaptive quadratic Kalman filter designed to resolve severe phase wrapping. Then, platform vibration is modeled as a non-stationary multi-sine term, whose components are accurately extracted using an improved signal decomposition algorithm enhanced by a dynamic noise adjustment mechanism. Subsequently, the trajectory deviation is parameterized following subaperture division, estimated using a hybrid optimizer that combines particle swarm optimization and gradient descent. Additionally, a composite modulated waveform application ensures low sidelobes and a low probability of intercept (LPI). Extensive simulations on point targets and complex scenes under various signal-to-noise-ratio (SNR) conditions are applied for SAR image reconstruction, demonstrating robust suppression of motion errors. Under identical simulated error conditions, the proposed method achieves an azimuth resolution of 4.28 cm, which demonstrates superior performance compared to the reported MOCO techniques. 
653 |a Particle swarm optimization 
653 |a Waveforms 
653 |a Image resolution 
653 |a Sidelobes 
653 |a Vibration control 
653 |a Optimization 
653 |a Unmanned aerial vehicles 
653 |a Image processing 
653 |a Adaptive filters 
653 |a Vibration 
653 |a Kalman filters 
653 |a Vibrations 
653 |a Image reconstruction 
653 |a Fourier transforms 
653 |a Trajectories 
653 |a Synthetic aperture radar 
653 |a Antennas 
653 |a Radar equipment 
653 |a Deviation 
653 |a Decomposition 
653 |a Motion compensation 
653 |a Errors 
653 |a Robustness (mathematics) 
653 |a Azimuth 
653 |a Compensation 
653 |a Parameter estimation 
653 |a Signal to noise ratio 
700 1 |a Shi Yanpeng  |u School of Integrated Circuits, Shandong University, Jinan 250100, China; chongzhengwu@mail.sdu.edu.cn (C.W.); ypshi@sdu.edu.cn (Y.S.); zhangxijian@sdu.edu.cn (X.Z.) 
700 1 |a Zhang Xijian  |u School of Integrated Circuits, Shandong University, Jinan 250100, China; chongzhengwu@mail.sdu.edu.cn (C.W.); ypshi@sdu.edu.cn (Y.S.); zhangxijian@sdu.edu.cn (X.Z.) 
700 1 |a Zhang, Yifei  |u School of Integrated Circuits, Shandong University, Jinan 250100, China; chongzhengwu@mail.sdu.edu.cn (C.W.); ypshi@sdu.edu.cn (Y.S.); zhangxijian@sdu.edu.cn (X.Z.) 
773 0 |t Remote Sensing  |g vol. 17, no. 24 (2025), p. 4036-4064 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286352144/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286352144/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286352144/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch