Assessment of WRF-Solar and WRF-Solar EPS Radiation Estimation in Asia Using the Geostationary Satellite Measurement

Збережено в:
Бібліографічні деталі
Опубліковано в::Remote Sensing vol. 17, no. 24 (2025), p. 3970-3994
Автор: Zhang Haoling
Інші автори: Li, Lei, Zhang Xindan, Liu, Shuhui, Zheng, Yu, Gui Ke, Ma Jingrui, Huizheng, Che
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3286352469
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17243970  |2 doi 
035 |a 3286352469 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Zhang Haoling 
245 1 |a Assessment of WRF-Solar and WRF-Solar EPS Radiation Estimation in Asia Using the Geostationary Satellite Measurement 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>The WRF-Solar EPS model shows comparable short-term (<36 h) forecasting capabilities to WRF-Solar, the model performing well in the Beijing-Tianjin-Hebei region and the Yangtze River Delta. Bias is lower in summer and autumn, while RMSE and MAE are lower in autumn and winter. <list-item> There is a temporal mismatch in the seasonal fluctuations of the bias, root mean square error, and mean absolute error of GHI. The errors fluctuations in DIR over Western China follow a distinctive pattern. </list-item> What are the implications of the main findings? <list list-type="bullet"> <list-item> </list-item>Ensemble forecasting can slightly enhance the stability of forecast results, but improve results little in short-term forecasting. <list-item> The error performance of WRF-Solar and WRF-Solar EPS in the short-term prediction of solar irradiance at the interannual scale in Asia is quantitatively evaluated, which provides a basic reference for subsequent improvement work. </list-item> Accurate solar radiation forecasting with numerical weather prediction (NWP) is critical for optimizing photovoltaic power generation. This study evaluates short-term (<36 h) performance of the Weather Research and Forecasting model (WRF-Solar) and its ensemble version (WRF-Solar EPS) for global horizontal irradiance (GHI) and direct horizontal irradiance (DIR) over East Asia (December 2019–November 2020) against geostationary satellite retrievals. Both models effectively capture GHI spatial patterns but exhibit systematic overestimation (biases: 17.27–17.68 W/m2), with peak errors in northwest China and the North China Plain. Temporal mismatches between bias (maximum in winter-spring) and RMSE/MAE (maximum in summer) may indicate seasonal variability in error signatures dominated by aerosols and clouds. For DIR, regional biases prevail: overestimation in the Tibetan Plateau and northwest China, and underestimation in southern China and Indo-China Peninsula. Errors (RMSE and MAE) are larger than for GHI, with peaks in southeast and northwest China, likely linked to poor cloud–aerosol simulations. WRF-Solar EPS shows no significant bias reduction but modest RMSE/MAE improvements in summer–autumn, particularly in southeast China, indicating limited enhancement of short-term predictive stability. Both WRF-Solar and WRF-Solar EPS require further refinements in cloud–aerosol parameterizations to mitigate systematic errors over East Asia in future applications. 
651 4 |a Asia 
651 4 |a China 
651 4 |a East Asia 
653 |a Weather forecasting 
653 |a Synchronous satellites 
653 |a Aerosols 
653 |a Autumn 
653 |a Bias 
653 |a Summer 
653 |a Weather 
653 |a Atmospheric aerosols 
653 |a Seasonal variations 
653 |a Numerical weather forecasting 
653 |a Fluctuations 
653 |a Irradiance 
653 |a Radiation 
653 |a Systematic errors 
653 |a Machine learning 
653 |a Simulation 
653 |a Clouds 
653 |a Photovoltaics 
653 |a Solar radiation 
653 |a Remote sensing 
653 |a Energy industry 
653 |a Root-mean-square errors 
653 |a Winter 
653 |a Stability 
653 |a Algorithms 
653 |a Alternative energy sources 
653 |a Statistical methods 
700 1 |a Li, Lei 
700 1 |a Zhang Xindan 
700 1 |a Liu, Shuhui 
700 1 |a Zheng, Yu 
700 1 |a Gui Ke 
700 1 |a Ma Jingrui 
700 1 |a Huizheng, Che 
773 0 |t Remote Sensing  |g vol. 17, no. 24 (2025), p. 3970-3994 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286352469/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286352469/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286352469/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch