Towards Governance of Socio-Technical System of Systems: Leveraging Lessons from Proven Engineering Principles

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Systems vol. 13, no. 12 (2025), p. 1113-1142
Kaituhi matua: Mogahed, Mohamed
Ētahi atu kaituhi: Mansouri Mo
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
Whakaahuatanga
Whakarāpopotonga:Healthcare delivery systems operate as complex socio-technical Systems-of-Systems (SoS), where autonomous entities—hospitals, insurers, laboratories, and technology vendors—must coordinate to achieve collective outcomes that exceed individual capabilities. Despite substantial investment in interoperability standards and regulatory frameworks, persistent fragmentation undermines care quality, operational efficiency, and systemic adaptability. This fragmentation stems from a fundamental governance paradox: how can independent systems retain operational autonomy while adhering to shared rules that ensure systemic resilience? This paper addresses this challenge by advancing a governance-oriented architecture grounded in Object-Oriented Programming (OOP) principles. We reinterpret core OOP constructs—encapsulation, modularity, inheritance, polymorphism, and interface definition—as governance mechanisms that enable autonomy through principled constraints while fostering structured coordination across heterogeneous systems. Central to this framework is the Confluence Interoperability Covenant (CIC), a socio-technical governance artifact that functions as an adaptive interface mechanism, codifying integrated legal, procedural, and technical standards without dictating internal system architectures. To validate this approach, we develop a functional proof-of-concept simulation using Petri Nets, modeling constituent healthcare systems as autonomous entities interacting through CIC-governed transitions. Comparative simulation results demonstrate that CIC-based governance significantly reduces fragmentation (from 0.8077 to 0.1538) while increasing successful interactions fivefold (from 68 to 339 over 400 steps). This work contributes foundational principles for SoS Engineering and offers practical guidance for designing scalable, interoperable governance architectures in mission-critical socio-technical domains.
ISSN:2079-8954
DOI:10.3390/systems13121113
Puna:Advanced Technologies & Aerospace Database