Artificial Intelligence for 5G and 6G Networks: A Taxonomy-Based Survey of Applications, Trends, and Challenges

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Technologies vol. 13, no. 12 (2025), p. 559-609
Κύριος συγγραφέας: Nouri, Omheni
Άλλοι συγγραφείς: Koubaa Hend, Zarai Faouzi
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3286356793
003 UK-CbPIL
022 |a 2227-7080 
024 7 |a 10.3390/technologies13120559  |2 doi 
035 |a 3286356793 
045 2 |b d20250101  |b d20251231 
084 |a 231637  |2 nlm 
100 1 |a Nouri, Omheni 
245 1 |a Artificial Intelligence for 5G and 6G Networks: A Taxonomy-Based Survey of Applications, Trends, and Challenges 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The mobile network ecosystem is undergoing profound change driven by Artificial Intelligence (AI), Network Function Virtualization (NFV), and Software-Defined Networking (SDN). These technologies are well positioned to enable the essential transformation of next-generation networks, delivering significant improvements in efficiency, flexibility, and sustainability. AI is expected to impact the entire lifecycle of mobile networks, including design, deployment, service implementation, and long-term management. This article reviews the key characteristics of 5G and the anticipated technology enablers of 6G, focusing on the integration of AI within mobile networks. This study addresses several perspectives, including network optimization, predictive analytics, and security enhancement. A taxonomy is proposed to classify AI applications into 5G and 6G according to their role in network operations and their impact across vertical domains such as the Internet of Things (IoT), healthcare, and transportation. Furthermore, emerging trends are discussed, including federated learning, advanced AI models, and explainable AI, along with major challenges related to data privacy, adaptability, and interoperability. This paper concludes with future research directions, emphasizing the importance of ethical AI policies and cross-sector collaborations to ensure effective and sustainable AI-enabled mobile networks. 
653 |a Wireless communications 
653 |a Network function virtualization 
653 |a Interoperability 
653 |a Collaboration 
653 |a Deep learning 
653 |a Internet of Things 
653 |a Network security 
653 |a 5G mobile communication 
653 |a Mobile communications networks 
653 |a Real time 
653 |a Taxonomy 
653 |a Architecture 
653 |a Ethics 
653 |a Machine learning 
653 |a Ethical standards 
653 |a Federated learning 
653 |a Explainable artificial intelligence 
653 |a Virtual reality 
653 |a Technology 
653 |a Cognition & reasoning 
653 |a Data integrity 
653 |a Artificial intelligence 
653 |a Trends 
653 |a 6G mobile communication 
653 |a Networks 
700 1 |a Koubaa Hend 
700 1 |a Zarai Faouzi 
773 0 |t Technologies  |g vol. 13, no. 12 (2025), p. 559-609 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286356793/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286356793/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286356793/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch