CALM: Continual Associative Learning Model via Sparse Distributed Memory

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:Technologies vol. 13, no. 12 (2025), p. 587-612
প্রধান লেখক: Nechesov Andrey
অন্যান্য লেখক: Ruponen Janne
প্রকাশিত:
MDPI AG
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
বিবরন
সার সংক্ষেপ:Sparse Distributed Memory (SDM) provides a biologically inspired mechanism for associative and online learning. Transformer architectures, despite exceptional inference performance, remain static and vulnerable to catastrophic forgetting. This work introduces Continual Associative Learning Model (CALM), a conceptual framework that defines the theoretical base and integration logic for the cognitive model seeking to establish continual, lifelong adaptation without retraining by combining SDM system with lightweight dual-transformer modules. The architecture proposes an always-online associative memory for episodic storage (System 1), as well as a pair of asynchronous transformer consolidate experience in the background for uninterrupted reasoning and gradual model evolution (System 2). The framework remains compatible with standard transformer benchmarks, establishing a shared evaluation basis for both reasoning accuracy and continual learning stability. Preliminary experiments using the SDMPreMark benchmark evaluate algorithmic behavior across multiple synthetic sets, confirming a critical radius-threshold phenomenon in SDM recall. These results represent deterministic characterization of SDM dynamics in the component level, preceding the integration in the model level with transformer-based semantic tasks. The CALM framework provides a reproducible foundation for studying continual memory and associative learning in hybrid transformer architectures, although future work should involve experiments with non-synthetic, high-load data to confirm scalable behavior in high interference.
আইএসএসএন:2227-7080
ডিওআই:10.3390/technologies13120587
সম্পদ:Materials Science Database