Three-Dimensional UAV Trajectory Planning Based on Improved Sparrow Search Algorithm

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Symmetry vol. 17, no. 12 (2025), p. 2071-2096
Yazar: Yang, Yong
Diğer Yazarlar: Sun, Li, Fu Yujie, Feng Weiqi, Xu Kaijun
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3286357289
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17122071  |2 doi 
035 |a 3286357289 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Yang, Yong  |u School of Flight Technology, Civil Aviation Flight University of China, Guanghan 618307, China 
245 1 |a Three-Dimensional UAV Trajectory Planning Based on Improved Sparrow Search Algorithm 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Whether an unmanned aerial vehicle (UAV) can complete its mission successfully is determined by trajectory planning. Reasonable and efficient UAV trajectory planning in 3D environments is a complex global optimization problem, in which numerous constraints need to be considered carefully, including mountainous terrain, obstacles, no-fly zones, safety altitude, smoothness, flight distance, and so on. Generally speaking, symmetry characteristics from the starting point to the endpoint can be concluded from the potential spatial multiple trajectories. Aiming at the deficiencies of the Sparrow Search Algorithm (SSA) in 3D symmetric trajectory planning such as population diversity and local optimization, the sine–cosine function and the Lévy flight strategy are combined, and the Improved Sparrow Search Algorithm (ISSA) is proposed, which can find a better solution in a shorter time by dynamically adjusting the search step size and increasing the occasional large step jumps so as to increase the symmetry balance of the global search and the local development. In order to verify the effectiveness of the improved algorithm, ISSA is simulated and compared with the Sparrow Search Algorithm (SSA), Particle Swarm Algorithm (PSO), Gray Wolf Algorithm (GWO) and Whale Optimization Algorithm (WOA) in the same environment. The results show that the ISSA algorithm outperforms the comparison algorithms in key indexes such as convergence speed, path cost, obstacle avoidance safety, and path smoothness, and can meet the requirement of obtaining a higher-quality flight path in a shorter number of iterations. 
653 |a Aircraft accidents & safety 
653 |a Simulation 
653 |a Particle swarm optimization 
653 |a Smoothness 
653 |a Unmanned aerial vehicles 
653 |a Global optimization 
653 |a Genetic algorithms 
653 |a Altitude 
653 |a Search algorithms 
653 |a Flight 
653 |a Local optimization 
653 |a Optimization algorithms 
653 |a Trajectory planning 
653 |a Symmetry 
653 |a Obstacle avoidance 
700 1 |a Sun, Li  |u School of Flight Technology, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Fu Yujie  |u School of Flight Technology, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Feng Weiqi  |u School of Flight Technology, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Xu Kaijun  |u School of Flight Technology, Civil Aviation Flight University of China, Guanghan 618307, China 
773 0 |t Symmetry  |g vol. 17, no. 12 (2025), p. 2071-2096 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286357289/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286357289/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286357289/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch