High-Speed Architecture for Hybrid Arithmetic–Huffman Data Compression

Guardado en:
Detalles Bibliográficos
Publicado en:Technologies vol. 13, no. 12 (2025), p. 585-607
Autor principal: Wiseman Yair
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286357368
003 UK-CbPIL
022 |a 2227-7080 
024 7 |a 10.3390/technologies13120585  |2 doi 
035 |a 3286357368 
045 2 |b d20250101  |b d20251231 
084 |a 231637  |2 nlm 
100 1 |a Wiseman Yair 
245 1 |a High-Speed Architecture for Hybrid Arithmetic–Huffman Data Compression 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper proposes a hardware–software co-design for adaptive lossless compression based on Hybrid Arithmetic–Huffman Coding, a table-driven approximation of arithmetic coding that preserves near-optimal compression efficiency while eliminating the multiplicative precision and sequential bottlenecks that have traditionally prevented arithmetic coding deployment in resource-constrained embedded systems. The compression pipeline is partitioned as follows: flexible software on the processor core dynamically builds and adapts the prefix coding (usually Huffman Coding) frontend for accurate probability estimation and binarization; the resulting binary stream is fed to a deeply pipelined systolic hardware accelerator that performs binary arithmetic coding using pre-calibrated finite state transition tables, dedicated renormalization logic, and carry propagation mitigation circuitry instantiated in on-chip memory. The resulting implementation achieves compression ratios consistently within 0.4% of the theoretical entropy limit, multi-gigabit per second throughput in 28 nm/FinFET nodes, and approximately 68% lower energy per compressed byte than optimized software arithmetic coding, making it ideally suited for real-time embedded vision, IoT sensor networks, and edge multimedia applications. 
653 |a Huffman codes 
653 |a Software 
653 |a Mathematical analysis 
653 |a Semiconductors 
653 |a Hardware 
653 |a Binary codes 
653 |a Microprocessors 
653 |a Real time 
653 |a Architecture 
653 |a Codes 
653 |a Circuits 
653 |a Research & development--R&D 
653 |a Workloads 
653 |a Compression ratio 
653 |a Entropy 
653 |a Data compression 
653 |a Chips (memory devices) 
653 |a Efficiency 
653 |a Co-design 
653 |a Design 
653 |a Probability 
653 |a Arithmetic coding 
653 |a Embedded systems 
773 0 |t Technologies  |g vol. 13, no. 12 (2025), p. 585-607 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286357368/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286357368/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286357368/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch