A New Asymmetric Track Filtering Algorithm Based on TCN-ResGRU-MHA

Na minha lista:
Detalhes bibliográficos
Publicado no:Symmetry vol. 17, no. 12 (2025), p. 2094-2121
Autor principal: Wu Hanbao
Outros Autores: Yang, Yonggang, Chen, Wei, Wang, Yizhi
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3286357436
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17122094  |2 doi 
035 |a 3286357436 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Wu Hanbao  |u School of Information Engineering, Wuhan University of Technology, Wuhan 430205, China; 358923@whut.edu.cn (H.W.); greatchen@whut.edu.cn (W.C.) 
245 1 |a A New Asymmetric Track Filtering Algorithm Based on TCN-ResGRU-MHA 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Modern target tracking systems rely on radar as a sensor to detect targets and generate raw track points. These raw track points are affected by the radar’s own noise and the asymmetric non-Gaussian noise resulting from the nonlinear transformation from polar coordinates to Cartesian coordinates. Without effective processing, such data cannot directly support highly reliable situational awareness, early warning decisions, or weapon guidance. Track filtering, as a core component of target tracking, plays an irreplaceable foundational role in achieving real-time, accurate, and stable estimation of moving target states. Traditional deep learning filtering algorithms struggle with capturing long-term dependencies in high-dimensional spaces, often exhibiting high computational complexity, slow response to transient signals, and compromised noise suppression due to their inherent architectural asymmetries. In order to address these issues and balance the model’s high accuracy, strong real-time performance, and robustness, a new trajectory filtering algorithm based on a temporal convolutional network (TCN), Residual Gated Recurrent Unit (ResGRU), and multi-head attention (MHA) is proposed. The TCN-ResGRU-MHA hybrid structure we propose combines the parallel processing advantages and detail-capturing ability of a TCN with the residual learning capability of a ResGRU, and introduces the MHA mechanism to achieve adaptive weighting of high-dimensional features. Using the root mean square error (RMSE) and Euclidean distance to evaluate the model effect, the experimental results show that the RMSE of TCN-ResGRU-MHA is 27.4621 (m) lower than CNN-GRU, which is an improvement of 15.99% in the complex scene of high latitude, and the distance is 37.906 (m) lower than CNN-GRU, which is an improvement of 18.65%. These results demonstrate its effectiveness in filtering and tracking tasks in high-latitude complex scenarios. 
653 |a Parallel processing 
653 |a Accuracy 
653 |a Deep learning 
653 |a Weapons 
653 |a Radar tracking 
653 |a Artificial neural networks 
653 |a Task complexity 
653 |a Tracking systems 
653 |a Polar coordinates 
653 |a Architecture 
653 |a Tracking 
653 |a Machine learning 
653 |a Time series 
653 |a Asymmetry 
653 |a Propagation 
653 |a Embedded systems 
653 |a Coordinate transformations 
653 |a Latitude 
653 |a Root-mean-square errors 
653 |a Noise reduction 
653 |a Sensors 
653 |a Neural networks 
653 |a Moving targets 
653 |a Effectiveness 
653 |a Target detection 
653 |a Situational awareness 
653 |a Random noise 
653 |a Algorithms 
653 |a Hybrid structures 
653 |a Kalman filters 
653 |a Real time 
653 |a Filtration 
653 |a Euclidean geometry 
653 |a Cartesian coordinates 
700 1 |a Yang, Yonggang  |u Wuhan Digital Engineering Institute, Wuhan 430205, China; wangyizhi2@hotmail.com 
700 1 |a Chen, Wei  |u School of Information Engineering, Wuhan University of Technology, Wuhan 430205, China; 358923@whut.edu.cn (H.W.); greatchen@whut.edu.cn (W.C.) 
700 1 |a Wang, Yizhi  |u Wuhan Digital Engineering Institute, Wuhan 430205, China; wangyizhi2@hotmail.com 
773 0 |t Symmetry  |g vol. 17, no. 12 (2025), p. 2094-2121 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286357436/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286357436/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286357436/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch