Reproducible Neuroimaging Analysis Pipelines for Dementia Research in Resource‐Limited Settings: Experience with fMRI Processing and Analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Alzheimer's & Dementia vol. 21 (Dec 1, 2025)
Autor principal: Nkwam, Philip
Otros Autores: Draper, Ethan, Cakmak, Jasmine, Fajardo, Alfonso, Kanagasabai, Kesavi, Tham, Channelle, Akinwale, Oluwateniola, Umoren, Charity, Aremu, Olusola, Anita, Nsiah Donkor, Raymond, Confidence, Dako, Farouk, Anazodo, Udunna, Mohamed, Abdalla Z
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286400293
003 UK-CbPIL
022 |a 1552-5260 
022 |a 1552-5279 
024 7 |a 10.1002/alz70856_104116  |2 doi 
035 |a 3286400293 
045 0 |b d20251201 
100 1 |a Nkwam, Philip  |u University of Lagos, Lagos, Nigeria, 
245 1 |a Reproducible Neuroimaging Analysis Pipelines for Dementia Research in Resource‐Limited Settings: Experience with fMRI Processing and Analysis 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a Background Resting‐state functional MRI (rs‐fMRI) allows us to investigate disruptions in brain connectivity associated with Alzheimer's disease (AD) progression. However, researchers in Low‐ and Middle‐Income Countries (LMICs) face significant barriers in analyzing fMRI data due to limited computational resources, and lack of standardized preprocessing pipelines tailored towards limited resource environments. We created a reproducible, resource‐efficient cloud‐based rs‐fMRI analysis pipeline specifically designed from open‐source preprocessing tools to address these challenges and empower LMIC researchers to conduct comparable neuroimaging research. Method This work was performed as part of the CONNExIN (COmprehensive Neuroimaging aNalysis Experience In resource‐constraiNed Settings) Program, a neuroimage analysis training program for African neuroscience researchers. A team of CONNExIN students utilized the Pre‐symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT‐AD) dataset to develop an open‐access analysis pipeline. The dataset included 75 subjects, each with high‐resolution anatomical T1‐weighted images and rsfMRI datasets acquired at baseline and four annual follow‐ups (12‐ 48 months). Our approach used Neurodesk (1) running on Google Colab to process and analyze the data using Google Cloud Engine instance (Intel(R) Xeon(R) CPU 3.10 GHz and 32GB RAM) running on a standard internet connection. Standard fMRI preprocessing steps (slice timing correction, motion correction, skull stripping and spatial normalization) were implemented to process the data. Functional connectivity metrics (Amplitude of Low‐Frequency Fluctuations (ALFF), fractional ALFF (fALFF), and Regional Homogeneity (ReHo)) were estimated on a subset of the data to evaluate the functionality of our approach. Result Preliminary analysis on data from 17 subjects taking around 20 minutes/timepoint/subject to generate reliable ALFF, fALFF, and ReHo maps (Figure 1), across all timepoints). Documentation of the full analysis pipeline will be made available on Protocol.io, ensuring transparency, version control, and facilitating reproducibility for LMIC researchers. Conclusion We introduced a cloud‐based low‐resource rs‐fMRI analysis pipeline to address computational constraints in LMIC research settings. Our approach will be applied to the whole PREVENT‐AD dataset and an ongoing African dementia study. A reliability analysis across LMIC groups, running the same pipeline on the same dataset, will assess its generalizability for resource‐efficient rs‐fMRI analysis. 
653 |a Transparency 
653 |a Analysis 
653 |a Reliability 
653 |a Neuroimaging 
653 |a Alzheimer's disease 
653 |a Datasets 
653 |a Brain 
653 |a Dementia 
653 |a Internet 
653 |a Functional magnetic resonance imaging 
653 |a Homogeneity 
653 |a Resting 
653 |a Medical imaging 
653 |a Reproducibility 
653 |a Treatment methods 
653 |a Maps 
653 |a Skull 
653 |a Data 
653 |a Pipelines 
653 |a Functional connectivity 
653 |a Disease 
653 |a Generalizability 
653 |a Documentation 
653 |a Research 
653 |a Low income groups 
653 |a Normalization 
653 |a Researchers 
700 1 |a Draper, Ethan  |u Montreal Neurological Institute, Montreal, QC, Canada, 
700 1 |a Cakmak, Jasmine  |u Montreal Neurological Institute, McGill University, Montreal, QC, Canada, 
700 1 |a Fajardo, Alfonso  |u Integrated Program in Neurosciences, McGill University, Montréal, QC, Canada, 
700 1 |a Kanagasabai, Kesavi  |u Department of Medical Biophysics, Western University, London, ON, Canada, 
700 1 |a Tham, Channelle  |u Radboud University, Nijmegen, Netherlands, 
700 1 |a Akinwale, Oluwateniola  |u Johns Hopkins University, Baltimore, MD, USA, 
700 1 |a Umoren, Charity  |u Medical Artificial Intelligence Laboratory, Crestview Radiology Ltd, Lagos, Nigeria, 
700 1 |a Aremu, Olusola  |u Department of Medicine, Lagos State University, Lagos, Nigeria, 
700 1 |a Anita, Nsiah Donkor  |u Department Of Medical Imaging Technology, University For Development Studies, Tamale, Ghana, 
700 1 |a Raymond, Confidence  |u Department of Biomedical Engineering, McGill University, Montreal, QC, Canada, 
700 1 |a Dako, Farouk  |u Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 
700 1 |a Anazodo, Udunna  |u Montreal Neurological Institute, McGill University, Montreal, QC, Canada, 
700 1 |a Mohamed, Abdalla Z  |u Center for Brain and Health, New York University‐ Abu Dhabi, Abu Dhabi, United Arab Emirates, 
773 0 |t Alzheimer's & Dementia  |g vol. 21 (Dec 1, 2025) 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286400293/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3286400293/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286400293/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch