Investigating sex differences in connected speech across the Alzheimer's disease spectrum using machine learning

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Alzheimer's & Dementia vol. 21 (Dec 1, 2025)
Κύριος συγγραφέας: Clarke, Natasha
Άλλοι συγγραφείς: Bedetti, Christophe, Metayer, Pierre‐Briac, Brambati, Simona Maria
Έκδοση:
John Wiley & Sons, Inc.
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3286455720
003 UK-CbPIL
022 |a 1552-5260 
022 |a 1552-5279 
024 7 |a 10.1002/alz70857_101206  |2 doi 
035 |a 3286455720 
045 0 |b d20251201 
100 1 |a Clarke, Natasha  |u Université de Montréal, Montréal, QC, Canada, 
245 1 |a Investigating sex differences in connected speech across the Alzheimer's disease spectrum using machine learning 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a Background Alterations in connected speech (CS), such as when describing a picture, have been identified in Alzheimer's disease (AD) and could act as markers of subjective (SCI) and mild cognitive impairment (MCI), and offer opportunities for therapeutic intervention. Machine learning has shown promise in classifying individuals along the AD spectrum using CS features. However, subtle sex differences in language may influence symptom presentation and classification accuracy. We investigated the impact of sex on CS and classification performance across the AD spectrum. Methods We analysed Cookie Theft scene descriptions from 751 participants in the CCNA COMPASS‐ND cohort. Forty lexical, semantic and syntactic CS features were extracted using a Python‐based pipeline, and used to train ten logistic regression models. Classification of AD, vascular‐AD (v‐AD), MCI, vascular‐MCI (v‐MCI), and SCI versus cognitively unimpaired (CU) participants was performed separately for men and women using 5‐fold cross‐validation. Age and education were regressed from features within each fold. Mean area under the curve (AUC) was calculated and sex differences in classification performance assessed using Bonferroni‐corrected t‐tests. Features were then ranked based on standardised model coefficients. Results Women were classified with higher AUC than men in SCI, MCI, and v‐AD, though only MCI remained significant after correction (p = 0.02). SCI and MCI classifications performed above chance for women, but below chance for men (Figure 1). We therefore focused on important features for v‐AD classifications, which performed above chance for both sexes, using feature rankings. Compared to CU men, men with v‐AD produced fluent speech that lacked detail, with more words indicating lexical access difficulties (e.g “remember”), yet syntactically complex speech (more subordinate phrases and left branching children), which may indicate compensation for lexical difficulties. Compared to CU women, women with v‐AD produced non‐fluent speech with more filled pauses (e.g. “um”), that was repetitive and relied on more common words and phrases, yet also syntactically complex (more subordinate phrases and coordinating conjunctions). Conclusions Sex‐stratified classification models revealed differences in performance, with implications for research and clinical applications. Linguistic markers may be more sensitive for women along the AD spectrum, highlighting the importance of sex‐stratified analyses. 
653 |a Gender differences 
653 |a Sex differences 
653 |a Alzheimer's disease 
653 |a Conjunctions 
653 |a Subjectivity 
653 |a Classification 
653 |a Phrases 
653 |a Subordination 
653 |a Machine learning 
653 |a Clinical research 
653 |a Women 
653 |a Speech 
653 |a Fluency 
653 |a Men 
653 |a Lexical semantics 
653 |a Cognitive impairment 
653 |a Theft 
653 |a Tree structures 
653 |a Lexical access 
653 |a Compensation 
653 |a Semantic features 
653 |a Pauses 
653 |a Disease 
653 |a Syntactic complexity 
653 |a Research applications 
700 1 |a Bedetti, Christophe  |u Université de Montréal, Montréal, QC, Canada, 
700 1 |a Metayer, Pierre‐Briac  |u Université de Montréal, Montréal, QC, Canada, 
700 1 |a Brambati, Simona Maria  |u Université de Montréal, Montréal, QC, Canada, 
773 0 |t Alzheimer's & Dementia  |g vol. 21 (Dec 1, 2025) 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286455720/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3286455720/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286455720/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch