Knowledge and Teaching with Artificial Intelligence: Stem Vs. Humanities
Salvato in:
| Pubblicato in: | Comunicar vol. 33, no. 82 (2025), p. 116-127 |
|---|---|
| Autore principale: | |
| Altri autori: | |
| Pubblicazione: |
Grupo Comunicar
|
| Soggetti: | |
| Accesso online: | Citation/Abstract Full Text Full Text - PDF |
| Tags: |
Nessun Tag, puoi essere il primo ad aggiungerne!!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3287465525 | ||
| 003 | UK-CbPIL | ||
| 024 | 7 | |a 10.5281/zenodo.15996228 |2 doi | |
| 035 | |a 3287465525 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 142130 |2 nlm | ||
| 100 | 1 | |a Alenezi, Abdullah |u Department of Curriculum and Instructional Technology, Northern Border University, Arar (Saudi Arabia) (abdullah.alasmar@nbu.edu.sa) (https://orcid.org/0000-0003-0233-6838) | |
| 245 | 1 | |a Knowledge and Teaching with Artificial Intelligence: Stem Vs. Humanities | |
| 260 | |b Grupo Comunicar |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Artificial intelligence (AI) literacy has become an essential competency in higher education across disciplines, yet the teaching approaches and content requirements differ significantly between STEM and humanities fields. This mixed-methods study investigates these differences, focusing on the pedagogical strategies, AI literacy needs, and institutional gaps that exist between the two domains. A quasi-experimental design was applied using a structured questionnaire with 25 university students (12 from STEM and 13 from humanities). Quantitative data were analyzed through descriptive statistics, while qualitative data were examined using thematic analysis. The findings reveal that STEM students prioritize technical skills such as programming and algorithmic logic, whereas humanities students emphasize conceptual understanding, ethical reasoning, and the social impact of AI. Both groups express concern over insufficient institutional support for comprehensive AI training. The study identifies the need for adaptable, discipline-specific AI curricula and advocates for interdisciplinary learning environments that balance technical and ethical components. This research fills a gap in current literature by empirically comparing AI literacy frameworks across distinct academic traditions and proposes evidence-based recommendations for inclusive AI curriculum development. La necesidad de alfabetización en inteligencia artificial (IA) se ha convertido en un aspecto fundamental de la educación superior, pero las diferentes disciplinas STEM y humanidades presentan diferentes necesidades de formación y contenido. El estudio examina los estándares de alfabetización en IA y los métodos pedagógicos para estos campos académicos mediante métodos cuantitativos y cualitativos. Un diseño de investigación cuasiexperimental utilizó cuestionarios para 25 estudiantes universitarios, de los cuales 12 pertenecían a campos STEM y 13 a estudios humanísticos. El estudio revela que los estudiantes STEM necesitan competencias técnicas en IA, mientras que los estudiantes de humanidades se centran en la comprensión de los conceptos conceptuales de IA y los efectos éticos y sociales de la inteligencia artificial. Los métodos utilizados para impartir los diferentes materiales difieren, ya que los programas STEM se centran en experiencias de programación y formación en desarrollo de algoritmos, mientras que los cursos de humanidades enseñan habilidades analíticas y conocimientos multidisciplinarios. Los estudiantes de ambos ámbitos identifican la formación insuficiente en IA como deficiente en sus programas académicos. La investigación apoya las clases interdisciplinarias de IA, combinando la instrucción presencial con enfoques de aprendizaje en línea para cerrar esta brecha en la alfabetización en IA. La información recopilada respalda la investigación en educación en IA para desarrollar nuevos estándares curriculares y estrategias gubernamentales que mejoren la competencia en IA en todos los campos académicos. | |
| 653 | |a Literacy | ||
| 653 | |a Ethics | ||
| 653 | |a Students | ||
| 653 | |a Higher education | ||
| 653 | |a College students | ||
| 653 | |a Humanities | ||
| 653 | |a Politics | ||
| 653 | |a Questionnaires | ||
| 653 | |a Quasi-experimental methods | ||
| 653 | |a Learning environment | ||
| 653 | |a Research ethics | ||
| 653 | |a Artificial intelligence | ||
| 653 | |a Academic disciplines | ||
| 653 | |a Science education | ||
| 653 | |a Teaching | ||
| 653 | |a Social impact | ||
| 653 | |a Vocational education | ||
| 653 | |a Interdisciplinary aspects | ||
| 653 | |a Algorithms | ||
| 653 | |a Research design | ||
| 653 | |a Curricula | ||
| 653 | |a Learning | ||
| 653 | |a Conceptual knowledge | ||
| 653 | |a Digital literacy | ||
| 653 | |a Pedagogy | ||
| 653 | |a Curriculum development | ||
| 653 | |a Mathematics education | ||
| 653 | |a STEM education | ||
| 653 | |a Teaching methods | ||
| 653 | |a Data | ||
| 653 | |a Technology education | ||
| 653 | |a Institutional aspects | ||
| 653 | |a Technical skills | ||
| 653 | |a Ethical reasoning | ||
| 653 | |a Statistics | ||
| 653 | |a Mixed methods research | ||
| 653 | |a Quantitative analysis | ||
| 653 | |a Qualitative research | ||
| 653 | |a Literature Reviews | ||
| 653 | |a Experiential Learning | ||
| 653 | |a Humanities Instruction | ||
| 653 | |a Coding | ||
| 653 | |a Evidence Based Practice | ||
| 653 | |a Comparative Education | ||
| 653 | |a Comparative Analysis | ||
| 653 | |a Language Processing | ||
| 653 | |a Cultural Awareness | ||
| 653 | |a Methods Research | ||
| 653 | |a Educational Strategies | ||
| 653 | |a Competence | ||
| 653 | |a Educational Resources | ||
| 653 | |a Influence of Technology | ||
| 653 | |a Career and Technical Education | ||
| 653 | |a Electronic Learning | ||
| 653 | |a Data Analysis | ||
| 653 | |a Holistic Approach | ||
| 653 | |a Interdisciplinary Approach | ||
| 700 | 1 | |a Alenezi, Abdulhameed |u Department of Instructional Technology, Jouf University, Jouf (Saudi Arabia) (ar.alenezi@ju.edu.sa) (https://orcid.org/0000-0003-3801-5294) | |
| 773 | 0 | |t Comunicar |g vol. 33, no. 82 (2025), p. 116-127 | |
| 786 | 0 | |d ProQuest |t Education Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3287465525/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3287465525/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3287465525/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |