Minimization Hydrogen Management Strategy Using the Red‐Tailed Hawk Algorithm for Hybrid Storage Electric Vehicles

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Energy Research vol. 2025, no. 1 (2025)
Autor principal: Rezk, Hegazy
Otros Autores: Aly, Mokhtar
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3287843205
003 UK-CbPIL
022 |a 0363-907X 
022 |a 1099-114X 
024 7 |a 10.1155/er/6623935  |2 doi 
035 |a 3287843205 
045 2 |b d20250101  |b d20251231 
084 |a 163842  |2 nlm 
100 1 |a Rezk, Hegazy  |u Department of Electrical Engineering, , College of Engineering in Wadi Alddawasir, , Prince Sattam bin Abdulaziz University, , Al-Kharj, , Saudi Arabia, <url href="http://psau.edu.sa">psau.edu.sa</url> 
245 1 |a Minimization Hydrogen Management Strategy Using the Red‐Tailed Hawk Algorithm for Hybrid Storage Electric Vehicles 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a Hybrid electric vehicles (HEVs) utilizing fuel cells (FCs), batteries, and supercapacitors (SCs) necessitate sophisticated energy management systems (EMSs) to optimize hydrogen utilization and improve efficiency. Conventional techniques, including proportional–integral (PI) control, state machine control strategy (SMCS), and the equivalent consumption minimization strategy (ECMS), have difficulties in sustaining optimal performance under dynamic loads because of their fixed or slowly adjusting parameters. This work introduces an improved energy consumption control system (ECMS) coupled with the red‐tailed hawk (RTH) optimization method for real‐time and adaptive power control. The RTH algorithm dynamically modifies the ECMS equivalency factor to enhance the equilibrium between the hydrogen economy and the battery state of charge (SOC). Simulation outcomes under the FTP‐75 driving cycle indicate that the proposed ECMS‐RTH decreases hydrogen consumption by 61.6% and enhances total system efficiency by 21.47% relative to traditional ECMS, while ensuring the battery SOC remains within safe parameters. The method surpasses contemporary metaheuristic techniques, including bald eagle search (BES), white shark optimizer (WSO), manta ray foraging optimization (MRFO), and cuckoo search (CS). The findings validate the efficacy of the ECMS‐RTH technique as an adaptive real‐time energy management framework for HEV applications. Future endeavors will encompass hardware‐in‐the‐loop validation and scalability studies of many microgrids. 
653 |a Parameters 
653 |a Distributed generation 
653 |a Control systems 
653 |a Wavelet transforms 
653 |a Hydrogen 
653 |a Algorithms 
653 |a Parameter identification 
653 |a Power control 
653 |a Optimization techniques 
653 |a Chemical reactions 
653 |a Electric vehicles 
653 |a State machines 
653 |a Equivalence 
653 |a Unmanned aerial vehicles 
653 |a Batteries 
653 |a Environmental impact 
653 |a Energy storage 
653 |a Marine fishes 
653 |a Fuel cells 
653 |a Hybrid electric vehicles 
653 |a Heuristic methods 
653 |a Energy consumption 
653 |a Dynamic loads 
653 |a Electric charge 
653 |a Supercapacitors 
653 |a Energy management 
653 |a Optimization 
653 |a State of charge 
653 |a Energy 
653 |a Energy management systems 
653 |a Optimization algorithms 
653 |a Vehicles 
653 |a Economic 
700 1 |a Aly, Mokhtar  |u Centro de Transición Energética (CTE), , Facultad de Ingeniería, , Universidad San Sebastián, , Bellavista 7, Santiago, , , Chile, <url href="http://uss.cl">uss.cl</url> 
773 0 |t International Journal of Energy Research  |g vol. 2025, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3287843205/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3287843205/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3287843205/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch