Minimization Hydrogen Management Strategy Using the Red‐Tailed Hawk Algorithm for Hybrid Storage Electric Vehicles
Guardado en:
| Publicado en: | International Journal of Energy Research vol. 2025, no. 1 (2025) |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
John Wiley & Sons, Inc.
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3287843205 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 0363-907X | ||
| 022 | |a 1099-114X | ||
| 024 | 7 | |a 10.1155/er/6623935 |2 doi | |
| 035 | |a 3287843205 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 163842 |2 nlm | ||
| 100 | 1 | |a Rezk, Hegazy |u Department of Electrical Engineering, , College of Engineering in Wadi Alddawasir, , Prince Sattam bin Abdulaziz University, , Al-Kharj, , Saudi Arabia, <url href="http://psau.edu.sa">psau.edu.sa</url> | |
| 245 | 1 | |a Minimization Hydrogen Management Strategy Using the Red‐Tailed Hawk Algorithm for Hybrid Storage Electric Vehicles | |
| 260 | |b John Wiley & Sons, Inc. |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Hybrid electric vehicles (HEVs) utilizing fuel cells (FCs), batteries, and supercapacitors (SCs) necessitate sophisticated energy management systems (EMSs) to optimize hydrogen utilization and improve efficiency. Conventional techniques, including proportional–integral (PI) control, state machine control strategy (SMCS), and the equivalent consumption minimization strategy (ECMS), have difficulties in sustaining optimal performance under dynamic loads because of their fixed or slowly adjusting parameters. This work introduces an improved energy consumption control system (ECMS) coupled with the red‐tailed hawk (RTH) optimization method for real‐time and adaptive power control. The RTH algorithm dynamically modifies the ECMS equivalency factor to enhance the equilibrium between the hydrogen economy and the battery state of charge (SOC). Simulation outcomes under the FTP‐75 driving cycle indicate that the proposed ECMS‐RTH decreases hydrogen consumption by 61.6% and enhances total system efficiency by 21.47% relative to traditional ECMS, while ensuring the battery SOC remains within safe parameters. The method surpasses contemporary metaheuristic techniques, including bald eagle search (BES), white shark optimizer (WSO), manta ray foraging optimization (MRFO), and cuckoo search (CS). The findings validate the efficacy of the ECMS‐RTH technique as an adaptive real‐time energy management framework for HEV applications. Future endeavors will encompass hardware‐in‐the‐loop validation and scalability studies of many microgrids. | |
| 653 | |a Parameters | ||
| 653 | |a Distributed generation | ||
| 653 | |a Control systems | ||
| 653 | |a Wavelet transforms | ||
| 653 | |a Hydrogen | ||
| 653 | |a Algorithms | ||
| 653 | |a Parameter identification | ||
| 653 | |a Power control | ||
| 653 | |a Optimization techniques | ||
| 653 | |a Chemical reactions | ||
| 653 | |a Electric vehicles | ||
| 653 | |a State machines | ||
| 653 | |a Equivalence | ||
| 653 | |a Unmanned aerial vehicles | ||
| 653 | |a Batteries | ||
| 653 | |a Environmental impact | ||
| 653 | |a Energy storage | ||
| 653 | |a Marine fishes | ||
| 653 | |a Fuel cells | ||
| 653 | |a Hybrid electric vehicles | ||
| 653 | |a Heuristic methods | ||
| 653 | |a Energy consumption | ||
| 653 | |a Dynamic loads | ||
| 653 | |a Electric charge | ||
| 653 | |a Supercapacitors | ||
| 653 | |a Energy management | ||
| 653 | |a Optimization | ||
| 653 | |a State of charge | ||
| 653 | |a Energy | ||
| 653 | |a Energy management systems | ||
| 653 | |a Optimization algorithms | ||
| 653 | |a Vehicles | ||
| 653 | |a Economic | ||
| 700 | 1 | |a Aly, Mokhtar |u Centro de Transición Energética (CTE), , Facultad de Ingeniería, , Universidad San Sebastián, , Bellavista 7, Santiago, , , Chile, <url href="http://uss.cl">uss.cl</url> | |
| 773 | 0 | |t International Journal of Energy Research |g vol. 2025, no. 1 (2025) | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3287843205/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3287843205/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3287843205/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |