Curvature‐dimension condition of sub‐Riemannian α$\alpha$‐Grushin half‐spaces

Guardado en:
Detalles Bibliográficos
Publicado en:Transactions of the London Mathematical Society vol. 12, no. 1 (Dec 1, 2025)
Autor principal: Borza, Samuël
Otros Autores: Tashiro, Kenshiro
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3287937921
003 UK-CbPIL
022 |a 2052-4986 
024 7 |a 10.1112/tlm3.70017  |2 doi 
035 |a 3287937921 
045 0 |b d20251201 
100 1 |a Borza, Samuël  |u Faculty of Mathematics, University of Vienna, Vienna, Austria 
245 1 |a Curvature‐dimension condition of sub‐Riemannian α$\alpha$‐Grushin half‐spaces 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a We provide new examples of sub‐Riemannian manifolds with boundary equipped with a smooth measure that satisfy the RCD(K,N)$\mathsf {RCD}(K, N)$ condition. They are constructed by equipping the half‐plane, the hemisphere and the hyperbolic half‐plane with a two‐dimensional almost‐Riemannian structure and a measure that vanishes on their boundary. The construction of these spaces is inspired from the geometry of the α$\alpha$‐Grushin plane. 
653 |a Riemann manifold 
653 |a Topological manifolds 
700 1 |a Tashiro, Kenshiro  |u Analysis on Metric Spaces Unit, Okinawa Institute of Science and Technology, Okinawa, Japan 
773 0 |t Transactions of the London Mathematical Society  |g vol. 12, no. 1 (Dec 1, 2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3287937921/abstract/embedded/KOLE7RPJVUKQAXRX?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3287937921/fulltext/embedded/KOLE7RPJVUKQAXRX?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3287937921/fulltextPDF/embedded/KOLE7RPJVUKQAXRX?source=fedsrch