Influence of Blade Slot Width on the Performance of Gas-liquid Multiphase Pump

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Applied Fluid Mechanics vol. 19, no. 2 (Feb 2026), p. 157-171
Autor principal: Han, W
Altres autors: Li, J Y, Li, R N
Publicat:
Isfahan University of Technology
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3288097844
003 UK-CbPIL
022 |a 1735-3572 
022 |a 1735-3645 
024 7 |a 10.47176/jafm.19.2.3614  |2 doi 
035 |a 3288097844 
045 2 |b d20260201  |b d20260228 
100 1 |a Han, W 
245 1 |a Influence of Blade Slot Width on the Performance of Gas-liquid Multiphase Pump 
260 |b Isfahan University of Technology  |c Feb 2026 
513 |a Journal Article 
520 3 |a To address the problem of flow aggregation caused by gas phase aggregation in a helical axial gas-liquid pump under high gas void fraction (IGVF≥30%), this study, based on the Euler multiphase flow model and SST k-ω investigates the quantitative correlation between clearance dimensions and performance characteristics as well as internal flow patterns in multiphase pumps operating under varying inlet gas volume fractions. The findings reveal that gas phase aggregation, induced by radial pressure gradients, stemming from the density difference between gas and liquid phases, is the dominant mechanism governing gas accumulation within the flow passages. Implementing the slotted configuration with an optimal gap width coefficient ξ=21.4% resulted in a 3.38% enhancement in multiphase pump efficiency compared to the baseline model, with only a marginal head reduction, achieving significant overall performance optimization. Mechanistic analysis demonstrates that the slotted configuration establishes a fluid dynamic coupling between the pressure and suction surfaces, allows high-momentum flux to transfer from the pressure-side boundary layer, replenishing energy to the low-velocity region on the suction side, thereby effectively suppressing the axial adverse pressure gradient effect. 
653 |a Flow distribution 
653 |a Pressure effects 
653 |a Liquid phases 
653 |a Flow pattern 
653 |a Suction 
653 |a Boundary layers 
653 |a Multiphase flow 
653 |a Optimization 
653 |a Internal flow 
653 |a Pressure gradients 
653 |a Performance characteristics 
653 |a Void fraction 
653 |a Axial flow pumps 
653 |a Vapor phases 
653 |a Configurations 
653 |a Velocity 
653 |a Turbulence models 
653 |a Clean technology 
653 |a Energy 
653 |a Efficiency 
653 |a Environmental 
700 1 |a Li, J Y 
700 1 |a Li, R N 
773 0 |t Journal of Applied Fluid Mechanics  |g vol. 19, no. 2 (Feb 2026), p. 157-171 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3288097844/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3288097844/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch