Intelligent Sensing: The Emerging Integration of Machine Learning and Soft Sensors Based on Hydrogels and Ionogels

Guardado en:
Detalles Bibliográficos
Publicado en:Advanced Science vol. 12, no. 48 (Dec 1, 2025)
Autor principal: He, Wenqing
Otros Autores: Lin, Rumin, Kong, Suixiu, Qiang, Mengyi, Huang, Lingqi, Dai, Bing, Yao, Xi, Su, Lei, Zhang, Xueji
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3288126191
003 UK-CbPIL
022 |a 2198-3844 
024 7 |a 10.1002/advs.202517851  |2 doi 
035 |a 3288126191 
045 0 |b d20251201 
100 1 |a He, Wenqing  |u College of Materials and Energy, Guang'an Institute of Technology, Guang'an, P. R. China 
245 1 |a Intelligent Sensing: The Emerging Integration of Machine Learning and Soft Sensors Based on Hydrogels and Ionogels 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a Intelligent sensing means the capability of systems to perceive, learn, analyze, and predict based on external stimuli, mimicking the cognitive functions of the human brain. With the assistance of machine learning algorithms for data processing, soft sensors made from hydrogels and ionogels possess intelligent sensing abilities. Here, the recent advances of hydrogel‐ and ionogel‐based soft sensors are comprehensively investigated and summarized, with a specific focus on machine learning‐implemented applications, including handwriting/gesture/object/motion/speech recognition, health monitoring, food detection, and beyond. With current limitations and future perspectives discussed, the fusion of the two is envisioned that can accelerate the development of intelligent sensing in the areas of human‐machine interface (HMI), health care, and soft robotics. 
653 |a Biocompatibility 
653 |a Mechanical properties 
653 |a Machine learning 
653 |a Text categorization 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Regression analysis 
653 |a Artificial intelligence 
653 |a Signal processing 
653 |a Sensors 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Data processing 
653 |a Feature selection 
653 |a Natural language processing 
653 |a Algorithms 
653 |a Clustering 
653 |a Decision trees 
653 |a Human-computer interaction 
653 |a Hydrogels 
653 |a Composite materials 
700 1 |a Lin, Rumin  |u Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, P. R. China 
700 1 |a Kong, Suixiu  |u Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, P. R. China 
700 1 |a Qiang, Mengyi  |u Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, P. R. China 
700 1 |a Huang, Lingqi  |u School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, P. R. China 
700 1 |a Dai, Bing  |u College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou, P. R. China 
700 1 |a Yao, Xi  |u Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, P. R. China 
700 1 |a Su, Lei  |u School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, P. R. China 
700 1 |a Zhang, Xueji  |u School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, P. R. China 
773 0 |t Advanced Science  |g vol. 12, no. 48 (Dec 1, 2025) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3288126191/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3288126191/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3288126191/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch