An Exponentially Fitted Upwind Scheme for Singularly Perturbed Differential Equations With Mixed Shift Parameters

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Mathematics vol. 2025, no. 1 (2025)
Autor principal: Demsie, Amare Worku
Otros Autores: Tiruneh, Awoke Andargie, Tsega, Endalew Getnet
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3288173020
003 UK-CbPIL
022 |a 2314-4629 
022 |a 2314-4785 
024 7 |a 10.1155/jom/3048746  |2 doi 
035 |a 3288173020 
045 2 |b d20250101  |b d20251231 
084 |a 259334  |2 nlm 
100 1 |a Demsie, Amare Worku  |u Department of Mathematics, , College of Sciences, , Bahir Dar University, , Bahir Dar, , Ethiopia, <url href="http://bdu.edu.et">bdu.edu.et</url> 
245 1 |a An Exponentially Fitted Upwind Scheme for Singularly Perturbed Differential Equations With Mixed Shift Parameters 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a This paper provides numerical solutions to a class of singularly perturbed differential–difference equations characterized by mixed shift parameters. The solutions of such problems exhibit sharp boundary layers near the endpoints of the spatial domain due to the presence of a small perturbation parameter ε(0 < ε ≪ 1). Consequently, classical numerical methods fail to give accurate results on uniform meshes. To address this challenge, we propose a numerical scheme that discretizes the problem using the Crank–Nicolson method in the temporal direction and an exponentially fitted finite difference scheme in the spatial direction, both on uniform meshes. Stability and convergence analyses confirmed that the proposed scheme is uniformly convergent with respect to the perturbation parameter ε, with second‐order accuracy in the temporal and spatial directions. Three model examples were presented for simulation, and the findings indicated that the theoretical analysis aligns with the practical results. Furthermore, the numerical results demonstrated that the proposed scheme outperforms several existing methods in the literature. 
653 |a Physiology 
653 |a Numerical analysis 
653 |a Singular perturbation 
653 |a Difference equations 
653 |a Mathematical analysis 
653 |a Differential equations 
653 |a Epidemiology 
653 |a Numerical methods 
653 |a Boundary conditions 
653 |a Boundary layers 
653 |a Parameters 
653 |a Finite difference method 
653 |a Crank-Nicholson method 
700 1 |a Tiruneh, Awoke Andargie  |u Department of Mathematics, , College of Sciences, , Bahir Dar University, , Bahir Dar, , Ethiopia, &lt;url href="http://bdu.edu.et"&gt;bdu.edu.et&lt;/url&gt; 
700 1 |a Tsega, Endalew Getnet  |u Department of Mathematics, , College of Sciences, , Bahir Dar University, , Bahir Dar, , Ethiopia, &lt;url href="http://bdu.edu.et"&gt;bdu.edu.et&lt;/url&gt; 
773 0 |t Journal of Mathematics  |g vol. 2025, no. 1 (2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3288173020/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3288173020/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3288173020/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch