Virtual parking path planning in narrow roads based on fuzzy pure pursuit algorithm

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:PLoS One vol. 20, no. 12 (Dec 2025), p. e0335911
Yazar: Men, Qingyi
Diğer Yazarlar: Wang, Yongwei, Cheng, Guangwei, Zhang, Ziyang, Zhu, Xuefeng, Zhou, Hui
Baskı/Yayın Bilgisi:
Public Library of Science
Konular:
Online Erişim:Citation/Abstract
Full Text
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3288245427
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0335911  |2 doi 
035 |a 3288245427 
045 2 |b d20251201  |b d20251231 
084 |a 174835  |2 nlm 
100 1 |a Men, Qingyi 
245 1 |a Virtual parking path planning in narrow roads based on fuzzy pure pursuit algorithm 
260 |b Public Library of Science  |c Dec 2025 
513 |a Journal Article 
520 3 |a To address the issues of low adaptability and significant tracking errors in parking scenarios when using fixed look-ahead distance Pure Pursuit (PP) algorithms, this paper proposes an automatic parking path tracking control algorithm based on Fuzzy Pure Pursuit (FPP). Considering the influence of road curvature on look-ahead distance, a fuzzy controller is designed to output speed proportionality coefficient and curvature proportionality coefficient. This enables adaptive adjustment of the look-ahead distance according to vehicle speed and road curvature, thereby enhancing path adaptability and tracking accuracy. Prescan/CarSim/Simulink simulation results demonstrate that in vertical parking scenarios, the FPP-based tracking control algorithm outperforms traditional PP algorithms in tracking performance for desired paths and heading angles. The tracking error is reduced by 4.8%, and the heading angle error is reduced by 7.3%. The test results of the Apollo advanced platform show that, under different initial heading angles, the vehicle is able to successfully track the parking path and completes the parking operation without collisions. The tracking control algorithm based on FPP has excellent environmental adaptability. 
653 |a Kinematics 
653 |a Velocity 
653 |a Control theory 
653 |a Roads & highways 
653 |a Algorithms 
653 |a Tracking control 
653 |a Planning 
653 |a Adaptability 
653 |a Controllers 
653 |a Path tracking 
653 |a Fuzzy control 
653 |a Design 
653 |a Parking 
653 |a Traffic speed 
653 |a Curvature 
653 |a Wheels 
653 |a Tracking errors 
653 |a Path planning 
653 |a Economic 
700 1 |a Wang, Yongwei 
700 1 |a Cheng, Guangwei 
700 1 |a Zhang, Ziyang 
700 1 |a Zhu, Xuefeng 
700 1 |a Zhou, Hui 
773 0 |t PLoS One  |g vol. 20, no. 12 (Dec 2025), p. e0335911 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3288245427/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3288245427/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3288245427/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch