Adaptive user interfaces for wearable medical devices using deep Q-learning and Golden Jackal Optimization

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 44776-44789
Autor principal: Jiang, Minhua
Otros Autores: Huang, Jia, Wang, Limei
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3288249138
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-28937-z  |2 doi 
035 |a 3288249138 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Jiang, Minhua  |u Department of Fine Arts and Design, Leshan Normal University, 614000, Leshan, Sichuan, China (ROR: https://ror.org/036cvz290) (GRID: grid.459727.a) (ISNI: 0000 0000 9195 8580) 
245 1 |a Adaptive user interfaces for wearable medical devices using deep Q-learning and Golden Jackal Optimization 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Wearable medical devices offer continuous health monitoring but often rely on static user interfaces that do not adjust to individual user needs. This lack of adaptability presents accessibility challenges, especially for older adults and users with limited tech proficiency. To address this, we propose an adaptive user interface powered by reinforcement learning to personalize navigation flow, button placement, and notification timing based on real-time user behavior. Our system uses a deep Q-learning (DQL) model enhanced with the Golden Jackal Optimization (GJO) algorithm for improved convergence and performance. Usability testing was conducted to evaluate the adaptive interface against traditional static designs. The proposed DQL-GJO model demonstrated the fastest convergence, requiring only 45 epochs, compared to 70 for standard DQL and 48–62 for other hybrid models. It also achieved the lowest task completion time (TCT) at 82 s, the lowest error rate (ER) at 9.9%, and the highest user satisfaction (US) at 78%. These improvements suggest that the GJO-enhanced model not only accelerates training efficiency but also delivers superior user experience in practical use. 
653 |a Medical equipment 
653 |a User interface 
653 |a User behavior 
653 |a Usability 
653 |a User needs 
653 |a Technology adoption 
653 |a User satisfaction 
653 |a Sensors 
653 |a Adaptation 
653 |a Design 
653 |a Learning 
653 |a Older people 
653 |a Customization 
653 |a Convergence 
653 |a Deep learning 
653 |a Interfaces 
653 |a Social 
653 |a Canis aureus 
700 1 |a Huang, Jia  |u Department of Fine Arts and Design, Leshan Normal University, 614000, Leshan, Sichuan, China (ROR: https://ror.org/036cvz290) (GRID: grid.459727.a) (ISNI: 0000 0000 9195 8580) 
700 1 |a Wang, Limei  |u College of Art and Design, Xihua University, 610039, Chengdu, China (ROR: https://ror.org/04gwtvf26) (GRID: grid.412983.5) (ISNI: 0000 0000 9427 7895) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 44776-44789 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3288249138/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3288249138/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3288249138/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch